PrintAs.hs revision de2f13b8310de00ca228385b1530660e036054c2
{- |
Module : $Header$
Description : print the abstract syntax so that it can be re-parsed
Copyright : (c) Christian Maeder and Uni Bremen 2003
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
printing data types of the abstract syntax
-}
module HasCASL.PrintAs where
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.FoldTerm
import HasCASL.Builtin
import Common.Id
import Common.Keywords
import Common.DocUtils
import Common.Doc
import Common.AS_Annotation
import qualified Data.Set as Set
import Data.List (groupBy, mapAccumL)
-- | short cut for: if b then empty else d
noPrint :: Bool -> Doc -> Doc
noPrint b d = if b then empty else d
noNullPrint :: [a] -> Doc -> Doc
noNullPrint = noPrint . null
semiDs :: Pretty a => [a] -> Doc
semiDs = fsep . punctuate semi . map pretty
semiAnnoted :: Pretty a => [Annoted a] -> Doc
semiAnnoted = vcat . map (printSemiAnno pretty True)
instance Pretty Variance where
pretty = sidDoc . mkSimpleId . show
instance Pretty a => Pretty (AnyKind a) where
pretty knd = case knd of
ClassKind ci -> pretty ci
FunKind v k1 k2 _ -> fsep
[ pretty v <> (case k1 of
FunKind _ _ _ _ -> parens
_ -> id) (pretty k1)
, funArrow, pretty k2]
varOfTypeArg :: TypeArg -> Id
varOfTypeArg (TypeArg i _ _ _ _ _ _) = i
instance Pretty TypePattern where
pretty tp = case tp of
TypePattern name@(Id ts cs _) args _ ->
let ds = map (pretty . varOfTypeArg) args in
if placeCount name == length args then
let (ras, dts) = mapAccumL ( \ l t -> if isPlace t then
case l of
x : r -> (r, x)
_ -> error "Pretty TypePattern"
else (l, printTypeToken t)) ds ts
in fsep $ dts ++ (if null cs then [] else
[brackets $ sepByCommas $ map printTypeId cs])
++ ras
else printTypeId name <+> fsep ds
TypePatternToken t -> printTypeToken t
MixfixTypePattern ts -> fsep $ map pretty ts
BracketTypePattern k l _ -> bracket k $ ppWithCommas l
TypePatternArg t _ -> parens $ pretty t
-- | put proper brackets around a document
bracket :: BracketKind -> Doc -> Doc
bracket b = case b of
Parens -> parens
Squares -> brackets
Braces -> specBraces
NoBrackets -> id
-- | print a 'Kind' plus a preceding colon (or nothing)
printKind :: Kind -> Doc
printKind k = noPrint (k == universe) $ printVarKind NonVar (VarKind k)
-- | print the kind of a variable with its variance and a preceding colon
printVarKind :: Variance -> VarKind -> Doc
printVarKind e vk = case vk of
Downset t -> less <+> pretty t
VarKind k -> colon <+> pretty e <> pretty k
MissingKind -> empty
data TypePrec = Outfix | Prefix | Lazyfix | ProdInfix | FunInfix | Absfix
deriving (Eq, Ord)
parenPrec :: TypePrec -> (TypePrec, Doc) -> Doc
parenPrec p1 (p2, d) = if p2 < p1 then d else parens d
printTypeToken :: Token -> Doc
printTypeToken t = let
l = ("*", cross) : map ( \ (a, d) -> (show a, d) )
[ (FunArr, funArrow)
, (PFunArr, pfun)
, (ContFunArr, cfun)
, (PContFunArr, pcfun) ]
in case lookup (tokStr t) l of
Just d -> d
_ -> pretty t
printTypeId :: Id -> Doc
printTypeId (Id ts cs _) = let (toks, pls) = splitMixToken ts in
fcat $ map printTypeToken toks
++ (if null cs then [] else [brackets $ sepByCommas $ map printTypeId cs])
++ map printTypeToken pls
toMixType :: Type -> (TypePrec, Doc)
toMixType typ = case typ of
TypeName name _ _ -> (Outfix, printTypeId name)
TypeToken tt -> (Outfix, printTypeToken tt)
TypeAbs v t _ ->
(Absfix, sep [ lambda <+> pretty v, bullet <+> snd (toMixType t)])
ExpandedType t1 _ -> toMixType t1 -- here we print the unexpanded type
BracketType k l _ ->
(Outfix, bracket k $ sepByCommas $ map (snd . toMixType) l)
KindedType t kind _ -> (Lazyfix, sep
[ parenPrec Lazyfix $ toMixType t
, colon <+> printList0 (Set.toList kind)])
MixfixType ts -> (Prefix, fsep $ map (snd . toMixType) ts)
TypeAppl t1 t2 -> let
(topTy, tyArgs) = getTypeApplAux False typ
aArgs = (Prefix, sep [ parenPrec ProdInfix $ toMixType t1
, parenPrec Prefix $ toMixType t2 ])
in case topTy of
TypeName name@(Id ts cs _) _k _i ->
case map toMixType tyArgs of
[dArg] -> case ts of
[e] | name == lazyTypeId ->
(Lazyfix, pretty e <+> parenPrec Lazyfix dArg)
[e1, e2, e3] | not (isPlace e1) && isPlace e2
&& not (isPlace e3) && null cs ->
(Outfix, fsep [pretty e1, snd dArg, pretty e3])
_ -> aArgs
[dArg1, dArg2] -> case ts of
[_, e2, _] | isInfix name && null cs ->
if tokStr e2 == prodS then
(ProdInfix, fsep
[ parenPrec ProdInfix dArg1
, cross, parenPrec ProdInfix dArg2])
else -- assume fun type
(FunInfix, fsep
[ parenPrec FunInfix dArg1
, printTypeToken e2, snd dArg2])
_ -> aArgs
dArgs -> if isProductIdWithArgs name $ length tyArgs then
(ProdInfix, fsep $ punctuate (space <> cross) $
map (parenPrec ProdInfix) dArgs) else aArgs
_ -> aArgs
instance Pretty Type where
pretty = snd . toMixType
printTypeScheme :: PolyId -> TypeScheme -> Doc
printTypeScheme (PolyId _ tys _) (TypeScheme vs t _) =
let tdoc = pretty t in
if null vs || not (null tys) then tdoc else
fsep [forallDoc, semiDs vs, bullet <+> tdoc]
-- no curried notation for bound variables
instance Pretty TypeScheme where
pretty = printTypeScheme (PolyId applId [] nullRange)
instance Pretty Partiality where
pretty p = case p of
Partial -> quMarkD
Total -> empty
instance Pretty Quantifier where
pretty q = case q of
Universal -> forallDoc
Existential -> exists
Unique -> unique
instance Pretty TypeQual where
pretty q = case q of
OfType -> colon
AsType -> text asS
InType -> inDoc
Inferred -> colon
instance Pretty Term where
pretty = printTerm . rmSomeTypes
isSimpleTerm :: Term -> Bool
isSimpleTerm trm = case trm of
QualVar _ -> True
QualOp _ _ _ _ _ _ -> True
ResolvedMixTerm _ _ _ _ -> True
ApplTerm _ _ _ -> True
TupleTerm _ _ -> True
TermToken _ -> True
BracketTerm _ _ _ -> True
_ -> False
-- | used only to produce CASL applications
isSimpleArgTerm :: Term -> Bool
isSimpleArgTerm trm = case trm of
QualVar vd -> not (isPatVarDecl vd)
QualOp _ _ _ _ _ _ -> True
ResolvedMixTerm n _ l _ -> placeCount n /= 0 || not (null l)
TupleTerm _ _ -> True
BracketTerm _ _ _ -> True
_ -> False
hasRightQuant :: Term -> Bool
hasRightQuant t = case t of
QuantifiedTerm {} -> True
LambdaTerm {} -> True
CaseTerm {} -> True
LetTerm Let _ _ _ -> True
ResolvedMixTerm n _ ts _ | endPlace n && placeCount n == length ts
-> hasRightQuant (last ts)
ApplTerm (ResolvedMixTerm n _ [] _) t2 _ | endPlace n ->
case t2 of
TupleTerm ts _ | placeCount n == length ts -> hasRightQuant (last ts)
_ -> hasRightQuant t2
ApplTerm _ t2 _ -> hasRightQuant t2
_ -> False
zipArgs :: Id -> [Term] -> [Doc] -> [Doc]
zipArgs n ts ds = case (ts, ds) of
(t : r, d : s) -> let
p = parenTermDoc t d
e = if hasRightQuant t then parens d else p
in if null r && null s && endPlace n then
[if hasRightQuant t then d else p]
else e : zipArgs n r s
_ -> []
isPatVarDecl :: VarDecl -> Bool
isPatVarDecl (VarDecl v ty _ _) = case ty of
TypeName t _ _ -> isSimpleId v && take 2 (show t) == "_v"
_ -> False
parenTermDoc :: Term -> Doc -> Doc
parenTermDoc trm = if isSimpleTerm trm then id else parens
printTermRec :: FoldRec Doc (Doc, Doc)
printTermRec = FoldRec
{ foldQualVar = \ _ vd@(VarDecl v _ _ _) ->
if isPatVarDecl vd then pretty v
else parens $ keyword varS <+> pretty vd
, foldQualOp = \ _ br n t tys k _ ->
(if null tys || k == Infer then id else
(<> brackets (ppWithCommas tys))) $
parens $ fsep [pretty br, pretty n, colon, printTypeScheme n $
if isPred br then unPredTypeScheme t else t]
, foldResolvedMixTerm =
\ (ResolvedMixTerm _ _ os _) n@(Id toks cs ps) tys ts _ ->
let pn = placeCount n in if pn == length ts || null ts then
let ds = zipArgs n os ts in
if null tys then idApplDoc n ds
else let (ftoks, _) = splitMixToken toks
fId = Id ftoks cs ps
(fts, rts) = splitAt (placeCount fId) $ if null ts
then replicate pn $ pretty placeTok else ds
in fsep $ (idApplDoc fId fts <> brackets (ppWithCommas tys))
: rts
else idApplDoc applId [idDoc n, parens $ sepByCommas ts]
, foldApplTerm = \ (ApplTerm o1 o2 _) t1 t2 _ ->
case (o1, o2) of
-- comment out the following two guards for CASL applications
(ResolvedMixTerm n _ [] _, TupleTerm ts@(_ : _) _)
| placeCount n == length ts ->
idApplDoc n (zipArgs n ts $ map printTerm ts)
(ResolvedMixTerm n _ [] _, _) | placeCount n == 1
-> idApplDoc n $ zipArgs n [o2] [t2]
_ -> idApplDoc applId $ zipArgs applId [o1, o2] [t1, t2]
, foldTupleTerm = \ _ ts _ -> parens $ sepByCommas ts
, foldTypedTerm = \ (TypedTerm ot _ _ _) t q typ _ -> fsep [(case ot of
TypedTerm {} | elem q [Inferred, OfType] -> parens
ApplTerm (ResolvedMixTerm n _ [] _) arg _ ->
let pn = placeCount n in case arg of
TupleTerm ts@(_ : _) _ | pn == length ts -> parens
_ | pn == 1 || hasRightQuant ot -> parens
_ -> id
_ | hasRightQuant ot -> parens
_ -> id) t, pretty q, pretty typ]
, foldQuantifiedTerm = \ _ q vs t _ ->
fsep [pretty q, printGenVarDecls vs, bullet <+> t]
, foldLambdaTerm = \ (LambdaTerm ops _ _ _) ps q t _ ->
fsep [ lambda
, case ops of
[p] -> case p of
TupleTerm [] _ -> empty
QualVar vd@(VarDecl v ty _ _) ->
pretty v <+> if isPatVarDecl vd then empty
else printVarDeclType ty
_ -> head ps
_ -> if all ( \ p -> case p of
QualVar vd -> not $ isPatVarDecl vd
_ -> False) ops
then printGenVarDecls $ map
( \ (QualVar vd) -> GenVarDecl vd) ops
else fcat $ map parens ps
, (case q of
Partial -> bullet
Total -> bullet <> text exMark) <+> t]
, foldCaseTerm = \ _ t es _ ->
fsep [text caseS, t, text ofS,
cat $ punctuate (space <> bar <> space) $
map (printEq0 funArrow) es]
, foldLetTerm = \ _ br es t _ ->
let des = sep $ punctuate semi $ map (printEq0 equals) es
in case br of
Let -> fsep [sep [text letS <+> des, text inS], t]
Where -> fsep [sep [t, text whereS], des]
Program -> text programS <+> des
, foldTermToken = \ _ t -> pretty t
, foldMixTypeTerm = \ _ q t _ -> pretty q <+> pretty t
, foldMixfixTerm = \ _ ts -> fsep ts
, foldBracketTerm = \ _ k l _ -> bracket k $ sepByCommas l
, foldAsPattern = \ _ (VarDecl v _ _ _) p _ ->
fsep [pretty v, text asP, p]
, foldProgEq = \ _ p t _ -> (p, t) }
printTerm :: Term -> Doc
printTerm = foldTerm printTermRec
rmTypeRec :: MapRec
rmTypeRec = mapRec
{ foldQualOp = \ t _ (PolyId i _ _) _ tys k ps ->
if elem i $ map fst bList then ResolvedMixTerm i
(if k == Infer then [] else tys) [] ps else t
, foldTypedTerm = \ _ nt q ty ps -> case q of
Inferred -> nt
_ -> case nt of
TypedTerm _ oq oty _ | oty == ty || oq == InType -> nt
QualVar (VarDecl _ oty _ _) | oty == ty -> nt
_ -> TypedTerm nt q ty ps }
rmSomeTypes :: Term -> Term
rmSomeTypes = foldTerm rmTypeRec
-- | put parenthesis around applications
parenTermRec :: MapRec
parenTermRec = let
addParAppl t = case t of
ResolvedMixTerm _ _ [] _ -> t
QualVar _ -> t
QualOp _ _ _ _ _ _ -> t
TermToken _ -> t
BracketTerm _ _ _ -> t
TupleTerm _ _ -> t
_ -> TupleTerm [t] nullRange
in mapRec
{ foldApplTerm = \ _ t1 t2 ps ->
ApplTerm (addParAppl t1) (addParAppl t2) ps
, foldResolvedMixTerm = \ _ n tys ts ps ->
ResolvedMixTerm n tys (map addParAppl ts) ps
, foldTypedTerm = \ _ t q typ ps ->
TypedTerm (addParAppl t) q typ ps
, foldMixfixTerm = \ _ ts -> MixfixTerm $ map addParAppl ts
, foldAsPattern = \ _ v p ps -> AsPattern v (addParAppl p) ps
}
parenTerm :: Term -> Term
parenTerm = foldTerm parenTermRec
-- | print an equation with different symbols between pattern and term
printEq0 :: Doc -> (Doc, Doc) -> Doc
printEq0 s (p, t) = sep [p, hsep [s, t]]
printGenVarDecls :: [GenVarDecl] -> Doc
printGenVarDecls = fsep . punctuate semi . map
( \ l -> case l of
[x] -> pretty x
GenVarDecl (VarDecl _ t _ _) : _ -> sep
[ ppWithCommas (map ( \ (GenVarDecl (VarDecl v _ _ _)) -> v) l)
, printVarDeclType t]
GenTypeVarDecl (TypeArg _ e c _ _ _ _) : _ -> sep
[ ppWithCommas (map ( \ (GenTypeVarDecl v) -> varOfTypeArg v) l)
, printVarKind e c]
_ -> error "printGenVarDecls") . groupBy sameType
sameType :: GenVarDecl -> GenVarDecl -> Bool
sameType g1 g2 = case (g1, g2) of
(GenVarDecl (VarDecl _ t1 Comma _), GenVarDecl (VarDecl _ t2 _ _))
| t1 == t2 -> True
(GenTypeVarDecl (TypeArg _ e1 c1 _ _ Comma _),
GenTypeVarDecl (TypeArg _ e2 c2 _ _ _ _)) | e1 == e2 && c1 == c2 -> True
_ -> False
printVarDeclType :: Type -> Doc
printVarDeclType t = case t of
MixfixType [] -> empty
_ -> colon <+> pretty t
instance Pretty VarDecl where
pretty (VarDecl v t _ _) = pretty v <+> printVarDeclType t
instance Pretty GenVarDecl where
pretty gvd = case gvd of
GenVarDecl v -> pretty v
GenTypeVarDecl tv -> pretty tv
instance Pretty TypeArg where
pretty (TypeArg v e c _ _ _ _) =
pretty v <+> printVarKind e c
-- | don't print an empty list and put parens around longer lists
printList0 :: (Pretty a) => [a] -> Doc
printList0 l = case l of
[] -> empty
[x] -> pretty x
_ -> parens $ ppWithCommas l
instance Pretty BasicSpec where
pretty (BasicSpec l) = if null l then specBraces empty else
changeGlobalAnnos addBuiltins . vcat $ map pretty l
instance Pretty ProgEq where
pretty (ProgEq p t ps) = printEq0 equals $ foldEq printTermRec
$ ProgEq (rmSomeTypes p) (rmSomeTypes t) ps
instance Pretty BasicItem where
pretty bi = case bi of
SigItems s -> pretty s
ProgItems l _ -> noNullPrint l $ sep [keyword programS, semiAnnoted l]
ClassItems i l _ -> noNullPrint l $ let
b = semiAnnos pretty l
p = plClass l
in case i of
Plain -> topSigKey (classS ++ if p then "es" else "") <+> b
Instance -> sep [keyword classS <+>
keyword (instanceS ++ if p then sS else ""), b]
GenVarItems l _ -> topSigKey (varS ++ pluralS l) <+> printGenVarDecls l
FreeDatatype l _ -> sep
[ keyword freeS <+> keyword (typeS ++ pluralS l)
, semiAnnos pretty l]
GenItems l _ -> let gkw = keyword generatedS in
(if all (isDatatype . item) l then \ i -> gkw <+> rmTopKey i
else \ i -> sep [gkw, specBraces i])
$ vcat $ map (printAnnoted pretty) l
AxiomItems vs fs _ -> sep
[ if null vs then empty else forallDoc <+> printGenVarDecls vs
, case fs of
[] -> empty
_ -> let pp = addBullet . pretty in
vcat $ map (printAnnoted pp) (init fs)
++ [printSemiAnno pp True $ last fs]]
Internal l _ -> sep
[ keyword internalS
, specBraces $ vcat $ map (printAnnoted pretty) l]
plClass :: [Annoted ClassItem] -> Bool
plClass l = case map item l of
_ : _ : _ -> True
[ClassItem (ClassDecl (_ : _ : _) _ _) _ _] -> True
_ -> False
pluralS :: [a] -> String
pluralS l = case l of
_ : _ : _ -> sS
_ -> ""
isDatatype :: SigItems -> Bool
isDatatype si = case si of
TypeItems _ l _ -> all
((\ t -> case t of
Datatype _ -> True
_ -> False) . item) l
_ -> False
instance Pretty OpBrand where
pretty b = keyword $ show b
instance Pretty SigItems where
pretty si = case si of
TypeItems i l _ -> noNullPrint l $
let b = semiAnnos pretty l in case i of
Plain -> topSigKey ((if all (isSimpleTypeItem . item) l
then typeS else typeS) ++ plTypes l) <+> b
Instance ->
sep [keyword typeS <+> keyword (instanceS ++ plTypes l), b]
OpItems b l _ -> noNullPrint l $ topSigKey (show b ++ plOps l)
<+> let po = (prettyOpItem $ isPred b) in
if case item $ last l of
OpDecl _ _ a@(_ : _) _ -> case last a of
UnitOpAttr {} -> True
_ -> False
OpDefn {} -> True
_ -> False
then vcat (map (printSemiAnno po True) l)
else semiAnnos po l
plTypes :: [Annoted TypeItem] -> String
plTypes l = case map item l of
_ : _ : _ -> sS
[TypeDecl (_ : _ : _) _ _] -> sS
[SubtypeDecl (_ : _ : _) _ _] -> sS
[IsoDecl (_ : _ : _) _] -> sS
_ -> ""
plOps :: [Annoted OpItem] -> String
plOps l = case map item l of
_ : _ : _ -> sS
[OpDecl (_ : _ : _) _ _ _] -> sS
_ -> ""
isSimpleTypeItem :: TypeItem -> Bool
isSimpleTypeItem ti = case ti of
TypeDecl l k _ -> k == universe && all isSimpleTypePat l
SubtypeDecl l (TypeName i _ _) _ ->
not (isMixfix i) && all isSimpleTypePat l
SubtypeDefn p (Var _) t _ _ ->
isSimpleTypePat p && isSimpleType t
_ -> False
isSimpleTypePat :: TypePattern -> Bool
isSimpleTypePat tp = case tp of
TypePattern i [] _ -> not $ isMixfix i
_ -> False
isSimpleType :: Type -> Bool
isSimpleType t = case t of
TypeName i _ _ -> not $ isMixfix i
TypeToken _ -> True
MixfixType[TypeToken _, BracketType Squares (_ : _) _] -> True
_ -> False
instance Pretty ClassItem where
pretty (ClassItem d l _) = pretty d $+$ noNullPrint l
(specBraces $ vcat $ map (printAnnoted pretty) l)
instance Pretty ClassDecl where
pretty (ClassDecl l k _) = let cs = ppWithCommas l in
if k == universe then cs else fsep [cs, less, pretty k]
instance Pretty Vars where
pretty vd = case vd of
Var v -> pretty v
VarTuple vs _ -> parens $ ppWithCommas vs
instance Pretty TypeItem where
pretty ti = case ti of
TypeDecl l k _ -> sep [ppWithCommas l, printKind k]
SubtypeDecl l t _ ->
fsep [ppWithCommas l, less, pretty t]
IsoDecl l _ -> fsep $ punctuate (space <> equals) $ map pretty l
SubtypeDefn p v t f _ ->
fsep [pretty p, equals,
specBraces $ fsep
[pretty v, colon <+> pretty t, bullet <+> pretty f]]
AliasType p _ (TypeScheme l t _) _ ->
fsep $ pretty p : map (pretty . varOfTypeArg) l
++ [text assignS <+> pretty t]
Datatype t -> pretty t
printItScheme :: [PolyId] -> Bool -> TypeScheme -> Doc
printItScheme ps b = (case ps of
[p] -> printTypeScheme p
_ -> pretty) . (if b then unPredTypeScheme else id)
prettyOpItem :: Bool -> OpItem -> Doc
prettyOpItem b oi = case oi of
OpDecl l t a _ -> fsep $ punctuate comma (map pretty l)
++ [colon <+>
(if null a then id else (<> comma))(printItScheme l b t)]
++ punctuate comma (map pretty a)
OpDefn n ps s t _ -> fcat $
((if null ps then (<> space) else id) $ pretty n)
: map ((<> space) . parens . printGenVarDecls . map GenVarDecl) ps
++ (if b then [] else [colon <+> printItScheme [n] b s <> space])
++ [(if b then equiv else equals) <> space, pretty t]
instance Pretty PolyId where
pretty (PolyId i@(Id ts cs ps) tys _) = if null tys then pretty i else
let (fts, plcs) = splitMixToken ts
in idDoc (Id fts cs ps) <> brackets (ppWithCommas tys)
<> hcat (map pretty plcs)
instance Pretty BinOpAttr where
pretty a = text $ case a of
Assoc -> assocS
Comm -> commS
Idem -> idemS
instance Pretty OpAttr where
pretty oa = case oa of
BinOpAttr a _ -> pretty a
UnitOpAttr t _ -> text unitS <+> pretty t
instance Pretty DatatypeDecl where
pretty (DatatypeDecl p k alts d _) =
fsep [ pretty p, printKind k, defn
<+> cat (punctuate (space <> bar <> space)
$ map pretty alts)
, case d of
[] -> empty
_ -> keyword derivingS <+> ppWithCommas d]
instance Pretty Alternative where
pretty alt = case alt of
Constructor n cs p _ -> pretty n <+> fsep
(map ( \ l -> case (l, p) of
-- comment out the following line to output real CASL
([NoSelector (TypeToken t)], Total) | isSimpleId n -> pretty t
_ -> parens $ semiDs l) cs) <> pretty p
Subtype l _ -> text (if all isSimpleType l then typeS else typeS)
<+> ppWithCommas l
instance Pretty Component where
pretty sel = case sel of
Selector n _ t _ _ -> sep [pretty n, colon <+> pretty t]
NoSelector t -> pretty t
instance Pretty Symb where
pretty (Symb i mt _) =
sep $ pretty i : case mt of
Nothing -> []
Just (SymbType t) -> [colon <+> pretty t]
instance Pretty SymbItems where
pretty (SymbItems k syms _ _) =
printSK k syms <> ppWithCommas syms
instance Pretty SymbOrMap where
pretty (SymbOrMap s mt _) =
sep $ pretty s : case mt of
Nothing -> []
Just t -> [mapsto <+> pretty t]
instance Pretty SymbMapItems where
pretty (SymbMapItems k syms _ _) =
printSK k syms <> ppWithCommas syms
-- | print symbol kind
printSK :: SymbKind -> [a] -> Doc
printSK k l = case k of
Implicit -> empty
_ -> keyword (drop 3 (show k) ++ case l of
_ : _ : _ -> sS
_ -> "") <> space