Morphism.hs revision ad187062b0009820118c1b773a232e29b879a2fa
{- |
Module : $Header$
Description : morphisms implementation
Copyright : (c) Christian Maeder and Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
mapping entities of morphisms
-}
module HasCASL.Morphism where
import HasCASL.Le
import HasCASL.As
import HasCASL.TypeAna
import HasCASL.AsUtils
import HasCASL.AsToLe
import HasCASL.MapTerm
import HasCASL.Merge
import Common.DocUtils
import Common.Id
import Common.Result
import qualified Data.Set as Set
import qualified Data.Map as Map
instance Eq Morphism where
m1 == m2 = (msource m1, mtarget m1, typeIdMap m1, funMap m1) ==
(msource m2, mtarget m2, typeIdMap m2, funMap m2)
-- | map type and expand it
mapTypeE :: TypeMap -> IdMap -> Type -> Type
mapTypeE tm im = expandAliases tm . mapType im
mapTypeScheme :: TypeMap -> IdMap -> TypeScheme -> TypeScheme
mapTypeScheme tm im = mapTypeOfScheme $ mapTypeE tm im
mapSen :: TypeMap -> IdMap -> FunMap -> Term -> Term
mapSen tm im fm = mapTerm (mapFunSym tm im fm, mapTypeE tm im)
mapDataEntry :: TypeMap -> IdMap -> FunMap -> DataEntry -> DataEntry
mapDataEntry tm im fm (DataEntry dm i k args rk alts) =
let tim = compIdMap dm im
in DataEntry tim i k args rk $ map
(mapAlt tm tim fm args $ patToType (Map.findWithDefault i i tim)
args rk) alts
mapAlt :: TypeMap -> IdMap -> FunMap -> [TypeArg] -> Type -> AltDefn
-> AltDefn
mapAlt tm im fm args dt c@(Construct mi ts p sels) =
case mi of
Just i ->
let sc = TypeScheme args
(getFunType dt p $ map (mapTypeE tm im) ts) nullRange
(j, TypeScheme _ ty _) = mapFunSym tm im fm (i, sc)
in Construct (Just j) ts (getPartiality ts ty) $
map (map (mapSel tm im fm args dt)) sels
Nothing -> c
mapSel :: TypeMap -> IdMap -> FunMap -> [TypeArg] -> Type -> Selector
-> Selector
mapSel tm im fm args dt s@(Select mid t p) = case mid of
Nothing -> s
Just i -> let
sc = TypeScheme args (getSelType dt p $ mapTypeE tm im t) nullRange
(j, TypeScheme _ ty _) = mapFunSym tm im fm (i, sc)
in Select (Just j) t $ getPartiality [dt] ty
-- | get the partiality from a constructor type
-- with a given number of curried arguments
getPartiality :: [a] -> Type -> Partiality
getPartiality args t = case getTypeAppl t of
(TypeName i _ _, [_, res]) | isArrow i -> case args of
[] -> Total
[_] -> if isPartialArrow i then Partial else Total
_ : rs -> getPartiality rs res
(TypeName i _ _, [_]) | i == lazyTypeId ->
if null args then Partial else error "getPartiality"
_ -> Total
mapSentence :: Morphism -> Sentence -> Result Sentence
mapSentence m s = let
tm = filterAliases $ typeMap $ mtarget m
im = typeIdMap m
fm = funMap m
f = mapFunSym tm im fm
in return $ case s of
Formula t -> Formula $ mapSen tm im fm t
DatatypeSen td -> DatatypeSen $ map (mapDataEntry tm im fm) td
ProgEqSen i sc pe ->
let (ni, nsc) = f (i, sc)
in ProgEqSen ni nsc $ mapEq (f, mapTypeE tm im) pe
mapFunSym :: TypeMap -> IdMap -> FunMap -> (Id, TypeScheme) -> (Id, TypeScheme)
mapFunSym tm im fm (i, sc) =
let msc = mapTypeScheme tm im sc
in Map.findWithDefault (i, msc) (i, msc) fm
embedMorphism :: Env -> Env -> Morphism
embedMorphism = mkMorphism
ideMor :: Env -> Morphism
ideMor e = embedMorphism e e
compIdMap :: IdMap -> IdMap -> IdMap
compIdMap im1 im2 = Map.foldWithKey ( \ i j ->
let k = Map.findWithDefault j j im2 in
if i == k then id else Map.insert i k)
im2 im1
compMor :: Morphism -> Morphism -> Result Morphism
compMor m1 m2 =
if mtarget m1 == msource m2 then
let tm2 = typeIdMap m2
im = compIdMap (typeIdMap m1) tm2
fm2 = funMap m2
tar = mtarget m2
src = msource m1
tm = filterAliases $ typeMap tar
in return (mkMorphism src tar)
{ typeIdMap = Map.intersection im $ typeMap src
, funMap = Map.intersection (Map.foldWithKey ( \ p1 p2 ->
let p3 = mapFunSym tm tm2 fm2 p2 in
if p1 == p3 then id else Map.insert p1 p3)
fm2 $ funMap m1) $ Map.fromList $
concatMap ( \ (k, os) ->
map ( \ o -> ((k, mapTypeScheme tm im
$ opType o), ())) $ Set.toList os)
$ Map.toList $ assumps src
}
else fail "intermediate signatures of morphisms do not match"
inclusionMor :: Env -> Env -> Result Morphism
inclusionMor e1 e2 =
if isSubEnv e1 e2
then return (embedMorphism e1 e2)
else Result [Diag Error
("Attempt to construct inclusion between non-subsignatures:\n"
++ showEnvDiff e1 e2) nullRange] Nothing
showEnvDiff :: Env -> Env -> String
showEnvDiff e1 e2 =
"Signature 1:\n" ++ showDoc e1 "\nSignature 2:\n"
++ showDoc e2 "\nDifference\n" ++ showDoc
(diffEnv e1 e2) ""
legalEnv :: Env -> Bool
legalEnv _ = True -- maybe a closure test?
legalMor :: Morphism -> Bool
legalMor m = let s = msource m
t = mtarget m
ts = typeIdMap m
fs = funMap m
in
all (`elem` (Map.keys $ typeMap s))
(Map.keys ts)
&& all (`elem` (Map.keys $ typeMap t))
(Map.elems ts)
&& all ((`elem` (Map.keys $ assumps s)) . fst)
(Map.keys fs)
&& all ((`elem` (Map.keys $ assumps t)) . fst)
(Map.elems fs)
morphismUnion :: Morphism -> Morphism -> Result Morphism
morphismUnion m1 m2 = do
let s1 = msource m1
s2 = msource m2
s <- merge s1 s2
t <- merge (mtarget m1) $ mtarget m2
mkP = Map.fromAscList . map ( \ a -> (a, a)) . Set.toList
tm1 = typeMap s1
tm2 = typeMap s2
im1 = typeIdMap m1
im2 = typeIdMap m2
-- unchanged types
ut1 = Map.keysSet tm1 Set.\\ Map.keysSet im1
ut2 = Map.keysSet tm2 Set.\\ Map.keysSet im2
ima1 = Map.union im1 $ mkP ut1
ima2 = Map.union im2 $ mkP ut2
tma = Map.filterWithKey (/=) $ Map.unionWithKey
(\ k t1 t2 -> if t1 == t2 then t1 else
error $ "incompatible mapping of type id: " ++
showId k " to: " ++ showId t1 " and: "
++ showId t2 "") ima1 ima2
sAs = filterAliases $ typeMap s
tAs = filterAliases $ typeMap t
expP = Map.fromList . map ( \ ((i, o), (j, p)) ->
((i, expand tAs o), (j, expand tAs p)))
fm1 = expP $ funMap m1
fm2 = expP $ funMap m2
af im = Set.unions . map ( \ (i, os) ->
Set.map ( \ o -> (i, mapTypeScheme tAs im
$ expand sAs $ opType o)) os)
-- unchanged functions
uf1 = af im1 (assumps s1) Set.\\ Map.keysSet fm1
uf2 = af im2 (assumps s2) Set.\\ Map.keysSet fm2
fma1 = Map.union fm1 $ mkP uf1
fma2 = Map.union fm2 $ mkP uf2
showFun (i, ty) = showId i . (" : " ++) . showDoc ty
fma = Map.filterWithKey (/=) $ Map.unionWithKey
(\ k o1 o2 -> if o1 == o2 then o1 else
error $ "incompatible mapping of op: " ++
showFun k " to: " ++ showFun o1 " and: "
++ showFun o2 "") fma1 fma2
return (mkMorphism s t)
{ typeIdMap = tma
, funMap = fma }
morphismToSymbMap :: Morphism -> SymbolMap
morphismToSymbMap mor =
let
src = msource mor
tar = mtarget mor
im = typeIdMap mor
tm = filterAliases $ typeMap tar
typeSymMap = Map.foldWithKey ( \ i ti ->
let j = Map.findWithDefault i i im
k = typeKind ti
in Map.insert (idToTypeSymbol src i k)
$ idToTypeSymbol tar j k) Map.empty $ typeMap src
( \ i s m ->
Set.fold ( \ oi ->
let ty = opType oi
(j, t2) = mapFunSym tm im (funMap mor) (i, ty)
in Map.insert (idToOpSymbol src i ty)
(idToOpSymbol tar j t2)) m s)
typeSymMap $ assumps src