{- |
Module : ./HasCASL/Morphism.hs
Description : morphisms implementation
Copyright : (c) Christian Maeder and Uni Bremen 2002-2006
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
mapping entities of morphisms
-}
module HasCASL.Morphism where
import HasCASL.As
import HasCASL.AsToLe
import HasCASL.AsUtils
import HasCASL.FoldType
import HasCASL.Le
import HasCASL.MapTerm
import HasCASL.Merge
import HasCASL.PrintLe
import HasCASL.TypeAna
import Common.DocUtils
import Common.Doc
import Common.Id
import Common.Result
import Common.Utils (composeMap)
import Common.Lib.MapSet (setToMap)
import Control.Monad
import qualified Data.Set as Set
import qualified Data.Map as Map
-> m ()
disjointKeys m1 m2 = let d = Map.keysSet $ Map.intersection m1 m2 in
unless (Set.null d) $ fail $ show
(sep [ text "overlapping identifiers for types and classes:"
, pretty d])
-- | map a kind along an identifier map
mapKindI :: IdMap -> Kind -> Kind
mapKindI jm = mapKind (\ a -> Map.findWithDefault a a jm)
-- | map a kind along a signature morphism (variance is preserved)
mapKinds :: Morphism -> Kind -> Kind
mapKinds = mapKindI . classIdMap
-- | only rename the kinds in a type
mapKindsOfType :: IdMap -> TypeMap -> IdMap -> Type -> Type
mapKindsOfType jm tm im = foldType mapTypeRec
{ foldTypeAbs = \ _ -> TypeAbs . mapTypeArg jm tm im
, foldKindedType = \ _ t -> KindedType t . Set.map (mapKindI jm) }
-- | map type, expand it, and also adjust the kinds
mapTypeE :: IdMap -> TypeMap -> IdMap -> Type -> Type
mapTypeE jm tm im =
mapKindsOfType jm tm im . expandAliases tm . mapType im
-- | map a kind along a signature morphism (variance is preserved)
mapVarKind :: IdMap -> TypeMap -> IdMap -> VarKind -> VarKind
mapVarKind jm tm im vk = case vk of
VarKind k -> VarKind $ mapKindI jm k
Downset ty -> Downset $ mapTypeE jm tm im ty
_ -> vk
mapTypeArg :: IdMap -> TypeMap -> IdMap -> TypeArg -> TypeArg
mapTypeArg jm tm im (TypeArg i v vk rk c s r) =
TypeArg i v (mapVarKind jm tm im vk) rk c s r
mapTypeScheme :: IdMap -> TypeMap -> IdMap -> TypeScheme -> TypeScheme
mapTypeScheme jm tm im (TypeScheme args ty ps) =
TypeScheme (map (mapTypeArg jm tm im) args) (mapTypeE jm tm im ty) ps
mapSen :: IdMap -> TypeMap -> IdMap -> FunMap -> Term -> Term
mapSen jm tm im fm = mapTerm (mapFunSym jm tm im fm, mapTypeE jm tm im)
getDatatypeIds :: DataEntry -> Set.Set Id
getDatatypeIds (DataEntry _ i _ _ _ alts) =
let getAltIds (Construct _ tys _ sels) = Set.union
(Set.unions $ map getTypeIds tys)
$ Set.unions $ concatMap (map getSelIds) sels
getSelIds (Select _ ty _) = getTypeIds ty
getTypeIds = idsOf (== 0)
mapDataEntry :: IdMap -> TypeMap -> IdMap -> FunMap -> DataEntry -> DataEntry
mapDataEntry jm tm im fm (DataEntry dm i k args rk alts) =
let nDm = Map.map (\ a -> Map.findWithDefault a a im) dm
newargs = map (mapTypeArg jm tm im) args
nIm = Map.difference im dm
in DataEntry nDm i k newargs rk $ Set.map
(mapAlt jm tm im fm nIm newargs
$ patToType (Map.findWithDefault i i dm) newargs rk) alts
mapAlt :: IdMap -> TypeMap -> IdMap -> FunMap -> IdMap -> [TypeArg] -> Type
-> AltDefn -> AltDefn
mapAlt jm tm im fm nIm args dt (Construct mi ts p sels) =
let newTs = map (mapTypeE jm tm nIm) ts
newSels = map (map (mapSel jm tm im fm nIm args dt)) sels
in case mi of
Just i -> let
sc = TypeScheme args (getFunType dt p ts) nullRange
(j, TypeScheme _ ty _) = mapFunSym jm tm im fm (i, sc)
in Construct (Just j) newTs (getPartiality newTs ty) newSels
Nothing -> Construct mi newTs p newSels
mapSel :: IdMap -> TypeMap -> IdMap -> FunMap -> IdMap -> [TypeArg] -> Type
-> Selector -> Selector
mapSel jm tm im fm nIm args dt (Select mid t p) =
let newT = mapTypeE jm tm nIm t
in case mid of
Nothing -> Select mid newT p
Just i -> let
sc = TypeScheme args (getSelType dt p t) nullRange
(j, TypeScheme _ ty _) = mapFunSym jm tm im fm (i, sc)
in Select (Just j) newT $ getPartiality [dt] ty
{- | get the partiality from a constructor type
with a given number of curried arguments. -}
getPartiality :: [a] -> Type -> Partiality
getPartiality args t = case getTypeAppl t of
(TypeName i _ _, [_, res]) | isArrow i -> case args of
[] -> Total
[_] -> if isPartialArrow i then Partial else Total
_ : rs -> getPartiality rs res
(TypeName i _ _, [_]) | i == lazyTypeId ->
if null args then Partial else error "getPartiality"
_ -> Total
mapSentence :: Morphism -> Sentence -> Result Sentence
mapSentence m s = let
tm = filterAliases . typeMap $ mtarget m
im = typeIdMap m
jm = classIdMap m
fm = funMap m
f = mapFunSym jm tm im fm
in return $ case s of
Formula t -> Formula $ mapSen jm tm im fm t
DatatypeSen td -> DatatypeSen $ map (mapDataEntry jm tm im fm) td
ProgEqSen i sc pe ->
let (ni, nsc) = f (i, sc)
in ProgEqSen ni nsc $ mapEq (f, mapTypeE jm tm im) pe
mapFunSym :: IdMap -> TypeMap -> IdMap -> FunMap -> (Id, TypeScheme)
-> (Id, TypeScheme)
mapFunSym jm tm im fm (i, sc) =
let msc = mapTypeScheme jm tm im sc
in Map.findWithDefault (i, msc) (i, sc) fm
ideMor :: Env -> Morphism
ideMor e = mkMorphism e e
compMor :: Morphism -> Morphism -> Result Morphism
compMor m1 m2 = let
tm1 = typeIdMap m1
tm2 = typeIdMap m2
ctm = composeMap (typeMap src) tm1 tm2
cm1 = classIdMap m1
cm2 = classIdMap m2
ccm = composeMap (classMap src) cm1 cm2
fm2 = funMap m2
fm1 = funMap m1
tar = mtarget m2
src = msource m1
tm = filterAliases $ typeMap tar
emb = mkMorphism src tar
in if isInclMor m1 && isInclMor m2 then return emb else do
disjointKeys ctm ccm
return emb
{ typeIdMap = ctm
, classIdMap = ccm
, funMap = Map.intersection
(Map.foldWithKey ( \ p1@(i, sc) p2 ->
let p3 = mapFunSym ccm tm tm2 fm2 p2
nSc = mapTypeScheme ccm tm ctm sc
in if (i, nSc) == p3 then Map.delete p1 else
Map.insert p1 p3)
fm2 fm1) $ Map.fromList $
concatMap ( \ (k, os) ->
map ( \ o -> ((k, opType o), ())) $ Set.toList os)
$ Map.toList $ assumps src }
showEnvDiff :: Env -> Env -> String
showEnvDiff e1 e2 =
"Signature 1:\n" ++ showDoc e1 "\nSignature 2:\n"
++ showDoc e2 "\nDifference\n" ++ showDoc
(diffEnv e1 e2) ""
legalMor :: Morphism -> Result ()
legalMor m = let
s = msource m
t = mtarget m
ts = typeIdMap m
cs = classIdMap m
fs = funMap m in
(fail "illegal HasCASL morphism")
morphismUnion :: Morphism -> Morphism -> Result Morphism
morphismUnion m1 m2 = do
let s1 = msource m1
s2 = msource m2
s <- merge s1 s2
t <- merge (mtarget m1) $ mtarget m2
let tm1 = typeMap s1
tm2 = typeMap s2
im1 = typeIdMap m1
im2 = typeIdMap m2
-- unchanged types
ut1 = Map.keysSet tm1 Set.\\ Map.keysSet im1
ut2 = Map.keysSet tm2 Set.\\ Map.keysSet im2
ima1 = Map.union im1 $ setToMap ut1
ima2 = Map.union im2 $ setToMap ut2
sAs = filterAliases $ typeMap s
tAs = filterAliases $ typeMap t
cm1 = classMap s1
cm2 = classMap s2
jm1 = classIdMap m1
jm2 = classIdMap m2
-- unchanged classes
cut1 = Map.keysSet cm1 Set.\\ Map.keysSet jm1
cut2 = Map.keysSet cm2 Set.\\ Map.keysSet jm2
cima1 = Map.union jm1 $ setToMap cut1
cima2 = Map.union jm2 $ setToMap cut2
expP = Map.fromList . map ( \ ((i, o), (j, p)) ->
((i, expand tAs o), (j, expand tAs p)))
fm1 = expP $ funMap m1
fm2 = expP $ funMap m2
af jm im = Set.unions . map ( \ (i, os) ->
Set.map ( \ o -> (i, mapTypeScheme jm tAs im
$ expand sAs $ opType o)) os)
-- unchanged functions
uf1 = af jm1 im1 (assumps s1) Set.\\ Map.keysSet fm1
uf2 = af jm2 im2 (assumps s2) Set.\\ Map.keysSet fm2
fma1 = Map.union fm1 $ setToMap uf1
fma2 = Map.union fm2 $ setToMap uf2
showFun (i, ty) = showId i . (" : " ++) . showDoc ty
tma <- mergeMap ( \ t1 t2 -> if t1 == t2 then return t1 else
fail $ "incompatible type mapping to `"
++ showId t1 "' and '" ++ showId t2 "'") ima1 ima2
cma <- mergeMap ( \ t1 t2 -> if t1 == t2 then return t1 else
fail $ "incompatible class mapping to `"
++ showId t1 "' and '" ++ showId t2 "'") cima1 cima2
fma <- mergeMap ( \ o1 o2 -> if o1 == o2 then return o1 else
fail $ "incompatible mapping to '"
++ showFun o1 "' and '" ++ showFun o2 "'") fma1 fma2
disjointKeys tma cma
return (mkMorphism s t)
{ typeIdMap = tma
, classIdMap = cma
, funMap = fma }
morphismToSymbMap :: Morphism -> SymbolMap
morphismToSymbMap mor = let
src = msource mor
tar = mtarget mor
im = typeIdMap mor
jm = classIdMap mor
tm = filterAliases $ typeMap tar
classSymMap = Map.foldWithKey ( \ i ti ->
let j = Map.findWithDefault i i jm
k = rawKind ti
in Map.insert (idToClassSymbol i k)
$ idToClassSymbol j k) Map.empty $ classMap src
typeSymMap = Map.foldWithKey ( \ i ti ->
let j = Map.findWithDefault i i im
k = typeKind ti
in Map.insert (idToTypeSymbol i k)
$ idToTypeSymbol j k) classSymMap $ typeMap src
( \ i s m ->
Set.fold ( \ oi ->
let ty = opType oi
(j, t2) = mapFunSym jm tm im (funMap mor) (i, ty)
in Map.insert (idToOpSymbol i ty)
(idToOpSymbol j t2)) m s)
typeSymMap $ assumps src