MixAna.hs revision c438c79d00fc438f99627e612498744bdc0d0c89
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
Mixfix analysis of terms and patterns, type annotations are also analysed
-}
module HasCASL.MixAna where
import Common.GlobalAnnotations
import Common.Result
import Common.Id
import Common.Earley
import Common.Prec
import Common.ConvertMixfixToken
import Common.Lib.State
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.Set as Set
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.PrintAs()
import HasCASL.Unify
import HasCASL.VarDecl
import HasCASL.Le
import Data.Maybe
import Control.Exception(assert)
addType :: Term -> Term -> Term
addType (MixTypeTerm q ty ps) t = TypedTerm t q ty ps
addType _ _ = error "addType"
iterateCharts :: GlobalAnnos -> [Term] -> Chart Term
-> State Env (Chart Term)
iterateCharts ga terms chart =
do e <- get
let self = iterateCharts ga
oneStep = nextChart addType toMixTerm ga chart
vs = localVars e
tm = typeMap e
case terms of
[] -> return chart
t:tt -> do
let recurse trm = self tt $
oneStep (trm, exprTok {tokPos = getRange trm})
case t of
MixfixTerm ts -> self (ts ++ tt) chart
MixTypeTerm q typ ps -> do
mTyp <- anaStarType typ
case mTyp of
Nothing -> recurse t
Just nTyp -> self tt $ oneStep
(MixTypeTerm q (monoType nTyp) ps,
typeTok {tokPos = ps})
BracketTerm b ts ps -> self
(expandPos TermToken (getBrackets b) ts ps ++ tt) chart
QualVar (VarDecl v typ ok ps) -> do
mTyp <- anaStarType typ
case mTyp of
Nothing -> recurse t
Just nType -> recurse $ QualVar $
VarDecl v (monoType nType) ok ps
QualOp b (InstOpId v ts qs) sc ps -> do
mSc <- anaTypeScheme sc
newTs <- anaInstTypes ts
case mSc of
Nothing -> recurse t
Just nSc -> do
case findOpId e v nSc of
Nothing -> addDiags [mkDiag Error
"operation not found" v]
_ -> return ()
recurse $ QualOp b (InstOpId v newTs qs) nSc ps
QuantifiedTerm quant decls hd ps -> do
newDs <- mapM (anaddGenVarDecl False) decls
mt <- resolve ga hd
putLocalVars vs
putTypeMap tm
let newT = case mt of Just trm -> trm
_ -> hd
recurse $ QuantifiedTerm quant (catMaybes newDs) newT ps
LambdaTerm decls part hd ps -> do
mDecls <- mapM (resolvePattern ga) decls
let anaDecls = catMaybes mDecls
bs = concatMap extractVars anaDecls
checkUniqueVars bs
mapM_ (addLocalVar False) bs
mt <- resolve ga hd
putLocalVars vs
recurse $ LambdaTerm anaDecls part (maybe hd id mt) ps
CaseTerm hd eqs ps -> do
mt <- resolve ga hd
newEs <- resolveCaseEqs ga eqs
recurse $ CaseTerm (maybe hd id mt) newEs ps
LetTerm b eqs hd ps -> do
newEs <- resolveLetEqs ga eqs
mt <- resolve ga hd
putLocalVars vs
recurse $ LetTerm b newEs (maybe hd id mt) ps
TermToken tok -> do
let (ds1, trm) = convertMixfixToken
(literal_annos ga)
ResolvedMixTerm TermToken tok
addDiags ds1
self tt $ oneStep $
case trm of
TermToken _ -> (trm, tok)
_ -> (trm, exprTok
{tokPos = tokPos tok})
AsPattern vd p ps -> do
mp <- resolvePattern ga p
let newP = case mp of Just pat -> pat
Nothing -> p
recurse $ AsPattern vd newP ps
TypedTerm trm k ty ps -> do
-- assume that type is analysed
mt <- resolve ga trm
recurse $ TypedTerm (maybe trm id mt) k ty ps
_ -> error ("iterCharts: " ++ show t)
-- * equation stuff
resolveCaseEq :: GlobalAnnos -> ProgEq -> State Env (Maybe ProgEq)
resolveCaseEq ga (ProgEq p t ps) =
do mp <- resolvePattern ga p
case mp of
Nothing -> return Nothing
Just newP -> do
let bs = extractVars newP
checkUniqueVars bs
vs <- gets localVars
mapM_ (addLocalVar False) bs
mtt <- resolve ga t
putLocalVars vs
return $ case mtt of
Nothing -> Nothing
Just newT -> Just $ ProgEq newP newT ps
resolveCaseEqs :: GlobalAnnos -> [ProgEq] -> State Env [ProgEq]
resolveCaseEqs _ [] = return []
resolveCaseEqs ga (eq : rt) =
do mEq <- resolveCaseEq ga eq
eqs <- resolveCaseEqs ga rt
return $ case mEq of
Nothing -> eqs
Just newEq -> newEq : eqs
resolveLetEqs :: GlobalAnnos -> [ProgEq] -> State Env [ProgEq]
resolveLetEqs _ [] = return []
resolveLetEqs ga (ProgEq pat trm ps : rt) =
do mPat <- resolvePattern ga pat
case mPat of
Nothing -> do resolve ga trm
resolveLetEqs ga rt
Just newPat -> do
let bs = extractVars newPat
checkUniqueVars bs
mapM_ (addLocalVar False) bs
mTrm <- resolve ga trm
case mTrm of
Nothing -> resolveLetEqs ga rt
Just newTrm -> do
eqs <- resolveLetEqs ga rt
return (ProgEq newPat newTrm ps : eqs)
mkPatAppl :: Term -> Term -> Range -> Term
mkPatAppl op arg qs =
case op of
QualVar (VarDecl i (MixfixType []) _ _) ->
ResolvedMixTerm i [arg] qs
_ -> ApplTerm op arg qs
toMixTerm :: Id -> [Term] -> Range -> Term
toMixTerm i ar qs =
if i == applId then assert (length ar == 2) $
let [op, arg] = ar in mkPatAppl op arg qs
else if i == tupleId || i == unitId then
mkTupleTerm ar qs
else ResolvedMixTerm i ar qs
getKnowns :: Id -> Set.Set Token
getKnowns (Id ts cs _) = Set.union (Set.fromList ts) $
Set.unions (map getKnowns cs)
resolvePattern :: GlobalAnnos -> Pattern -> State Env (Maybe Pattern)
resolvePattern = resolver True
resolve :: GlobalAnnos -> Term -> State Env (Maybe Term)
resolve = resolver False
resolver :: Bool -> GlobalAnnos -> Term -> State Env (Maybe Term)
resolver isPat ga trm =
do ass <- gets assumps
vs <- gets localVars
ps <- gets preIds
let (addRule, ruleS, sIds) = makeRules ga ps
$ Set.union (Rel.keysSet ass) $ Rel.keysSet vs
chart <- iterateCharts ga [trm] $ initChart addRule ruleS
let Result ds mr = getResolved
(showPretty . parenTerm) (getRange trm)
toMixTerm chart
addDiags ds
if isPat then case mr of
Nothing -> return mr
Just pat -> fmap Just $ anaPattern sIds pat
else return mr
uTok :: Token
uTok = mkSimpleId "_"
builtinIds :: [Id]
builtinIds = [unitId, parenId, tupleId, exprId, typeId, applId]
makeRules :: GlobalAnnos -> (PrecMap, Set.Set Id) -> Set.Set Id
-> (Token -> [Rule], Rules, Set.Set Id)
makeRules ga ps@(p, _) aIds =
let (sIds, ids) = Set.partition isSimpleId aIds
ks = Set.fold (Set.union . getKnowns) Set.empty ids
rIds = Set.union ids $ Set.intersection sIds $ Set.map simpleIdToId ks
m2 = maxWeight p + 2
in ( \ tok -> if isSimpleToken tok
&& not (Set.member tok ks)
|| tok == uTok then
[(simpleIdToId tok, m2, [tok])] else []
, partitionRules $ listRules m2 ga ++
initRules ps builtinIds (Set.toList rIds)
, sIds)
initRules :: (PrecMap, Set.Set Id) -> [Id] -> [Id] -> [Rule]
initRules (p, ps) bs is =
map ( \ i -> mixRule (getIdPrec p ps i) i)
(bs ++ is) ++
map ( \ i -> (protect i, maxWeight p + 3, getPlainTokenList i))
(filter isMixfix is)
-- create fresh type vars for unknown ids tagged with type MixfixType [].
anaPattern :: Set.Set Id -> Pattern -> State Env Pattern
anaPattern s pat =
case pat of
QualVar vd -> do newVd <- checkVarDecl vd
return $ QualVar newVd
ResolvedMixTerm i pats ps | null pats &&
(isSimpleId i || i == simpleIdToId uTok) &&
not (Set.member i s) -> do
(tvar, c) <- toEnvState $ freshVar $ posOfId i
return $ QualVar $ VarDecl i (TypeName tvar rStar c) Other ps
| otherwise -> do
l <- mapM (anaPattern s) pats
return $ ResolvedMixTerm i l ps
ApplTerm p1 p2 ps -> do
p3 <- anaPattern s p1
p4 <- anaPattern s p2
return $ ApplTerm p3 p4 ps
TupleTerm pats ps -> do
l <- mapM (anaPattern s) pats
return $ TupleTerm l ps
TypedTerm p q ty ps -> do
case p of
QualVar (VarDecl v (MixfixType []) ok qs) ->
let newVd = VarDecl v ty ok (qs `appRange` ps) in
return $ QualVar newVd
_ -> do newP <- anaPattern s p
return $ TypedTerm newP q ty ps
AsPattern vd p2 ps -> do
newVd <- checkVarDecl vd
p4 <- anaPattern s p2
return $ AsPattern newVd p4 ps
_ -> return pat
where checkVarDecl vd@(VarDecl v t ok ps) = case t of
MixfixType [] -> do
(tvar, c) <- toEnvState $ freshVar $ posOfId v
return $ VarDecl v (TypeName tvar rStar c) ok ps
_ -> return vd
-- | put parenthesis around applications
parenTerm :: Term -> Term
parenTerm trm = case trm of
ResolvedMixTerm n ts ps ->
ResolvedMixTerm n (map parenTerm ts) ps
ApplTerm t1 t2' ps -> let t2 = parenTerm t2' in
ApplTerm (addParAppl t1) (case t2 of
ResolvedMixTerm _ [] _ -> t2
QualVar _ -> t2
QualOp _ _ _ _ -> t2
TermToken _ -> t1
BracketTerm _ _ _ -> t2
TupleTerm _ _ -> t2
_ -> addPar t2) ps
TupleTerm ts ps -> TupleTerm (map parenTerm ts) ps
TypedTerm t q typ ps ->
TypedTerm (addParAppl t) q typ ps
QuantifiedTerm q vs t ps -> QuantifiedTerm q vs (parenTerm t) ps
LambdaTerm ps q t qs ->
LambdaTerm (map parenTerm ps) q (parenTerm t) qs
CaseTerm t es ps -> CaseTerm (parenTerm t) (map parenProgEq es) ps
LetTerm br es t ps ->
LetTerm br (map parenProgEq es) (parenTerm t) ps
MixfixTerm ts -> MixfixTerm $ map addParAppl ts
BracketTerm k ts ps -> BracketTerm k (map parenTerm ts) ps
AsPattern v p ps -> AsPattern v (addParAppl p) ps
TermToken _ -> trm
MixTypeTerm _ _ _ -> trm
QualVar _ -> trm
QualOp _ _ _ _ -> trm
where addPar t = TupleTerm [t] nullRange
addParAppl t' = let t = parenTerm t' in case t of
ApplTerm _ _ _ -> t
ResolvedMixTerm _ _ _ -> t
QualVar _ -> t
QualOp _ _ _ _ -> t
TermToken _ -> t
BracketTerm _ _ _ -> t
TupleTerm _ _ -> t
_ -> addPar t
-- | put parenthesis around applications in equations
parenProgEq :: ProgEq -> ProgEq
parenProgEq (ProgEq p t q) = ProgEq (parenTerm p) (parenTerm t) q