MixAna.hs revision b9f1c1e07f18bf75aadcbba375e7558dc295df4e
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
Mixfix analysis of terms and patterns, type annotations are also analysed
-}
module HasCASL.MixAna where
import Common.GlobalAnnotations
import Common.Result
import Common.PrettyPrint
import Common.Id
import Common.Keywords
import Common.Earley
import Common.ConvertLiteral
import Common.Lib.State
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.VarDecl
import HasCASL.MinType
import HasCASL.Le
import Data.Maybe
import Control.Exception(assert)
opKindFilter :: Int -> Int -> Maybe Bool
opKindFilter arg op =
if op < arg then Just True
else if arg < op then Just False
else Nothing
getIdPrec :: PrecMap -> Set.Set Id -> Id -> Int
getIdPrec (pm, r, m) ps i = if i == applId then m + 1
else Map.findWithDefault
(if begPlace i || endPlace i then if Set.member i ps then r else m
else m + 2) i pm
addType :: Term -> Term -> Term
addType (MixTypeTerm q ty ps) t = TypedTerm t q ty ps
addType _ _ = error "addType"
type TermChart = Chart Term
iterateCharts :: GlobalAnnos -> [Term] -> TermChart
-> State Env TermChart
iterateCharts ga terms chart =
do e <- get
let self = iterateCharts ga
oneStep = nextChart addType opKindFilter
toMixTerm ga chart
ass = assumps e
vs = localVars e
tm = typeMap e
if null terms then return chart else
do let t:tt = terms
recurse trm = self tt $
oneStep (trm, exprTok {tokPos = posOfTerm trm})
case t of
MixfixTerm ts -> self (ts ++ tt) chart
MixTypeTerm q typ ps -> do
mTyp <- anaStarType typ
case mTyp of
Nothing -> recurse t
Just nTyp -> self tt $ oneStep
(MixTypeTerm q (monoType nTyp) ps,
typeTok {tokPos = ps})
BracketTerm b ts ps -> self
(expandPos TermToken (getBrackets b) ts ps ++ tt) chart
QualVar (VarDecl v typ ok ps) -> do
mTyp <- anaStarType typ
case mTyp of
Nothing -> recurse t
Just nType -> do
let nTyp = monoType nType
mi = findOpId e v $ simpleTypeScheme nTyp
case mi of
Nothing -> addDiags [mkDiag Error
"value not found" v]
_ -> return ()
recurse $ QualVar $ VarDecl v nTyp ok ps
QualOp b (InstOpId v ts qs) sc ps -> do
mSc <- anaTypeScheme sc
newTs <- anaInstTypes ts
case mSc of
Nothing -> recurse t
Just nSc -> do
let mi = findOpId e v nSc
case mi of
Nothing -> addDiags [mkDiag Error
"value not found" v]
_ -> return ()
recurse $ QualOp b (InstOpId v newTs qs) nSc ps
QuantifiedTerm quant decls hd ps -> do
newDs <- mapM anaGenVarDecl decls
mt <- resolve ga hd
putAssumps ass
putTypeMap tm
let newT = case mt of Just trm -> trm
_ -> hd
recurse $ QuantifiedTerm quant (catMaybes newDs) newT ps
LambdaTerm decls part hd ps -> do
mDecls <- mapM (resolvePattern ga) decls
let newDecls = catMaybes mDecls
anaDecls <- mapM anaPattern newDecls
let bs = concatMap extractVars anaDecls
checkUniqueVars bs
mapM_ addLocalVar bs
mt <- resolve ga hd
putLocalVars vs
let newT = case mt of Just trm -> trm
_ -> hd
recurse $ LambdaTerm anaDecls part newT ps
CaseTerm hd eqs ps -> do
mt <- resolve ga hd
let newT = case mt of Just trm -> trm
_ -> hd
newEs <- resolveCaseEqs ga eqs
recurse $ CaseTerm newT newEs ps
LetTerm b eqs hd ps -> do
newEs <- resolveLetEqs ga eqs
mt <- resolve ga hd
let newT = case mt of Just trm -> trm
_ -> hd
putLocalVars vs
recurse $ LetTerm b newEs newT ps
TermToken tok -> do
let (ds1, trm) = convertMixfixToken
(literal_annos ga)
ResolvedMixTerm TermToken tok
addDiags ds1
self tt $ oneStep $
case trm of
TermToken _ -> (trm, tok)
_ -> (trm, exprTok
{tokPos = tokPos tok})
AsPattern vd p ps -> do
mp <- resolvePattern ga p
let newP = case mp of Just pat -> pat
Nothing -> p
recurse $ AsPattern vd newP ps
TypedTerm trm k ty ps -> do
-- assume that type is analysed
mt <- resolve ga trm
let newT = case mt of Just tr -> tr
Nothing -> trm
recurse $ TypedTerm newT k ty ps
_ -> error ("iterCharts: " ++ show t)
-- * equation stuff
resolveCaseEq :: GlobalAnnos -> ProgEq -> State Env (Maybe ProgEq)
resolveCaseEq ga (ProgEq p t ps) =
do mp <- resolvePattern ga p
case mp of
Nothing -> return Nothing
Just np -> do
vs <- gets localVars
newP <- anaPattern np
let bs = extractVars newP
checkUniqueVars bs
mapM_ addLocalVar bs
mtt <- resolve ga t
putLocalVars vs
return $ case mtt of
Nothing -> Nothing
Just newT -> Just $ ProgEq newP newT ps
resolveCaseEqs :: GlobalAnnos -> [ProgEq] -> State Env [ProgEq]
resolveCaseEqs _ [] = return []
resolveCaseEqs ga (eq:rt) =
do mEq <- resolveCaseEq ga eq
eqs <- resolveCaseEqs ga rt
return $ case mEq of
Nothing -> eqs
Just newEq -> newEq : eqs
resolveLetEqs :: GlobalAnnos -> [ProgEq] -> State Env [ProgEq]
resolveLetEqs _ [] = return []
resolveLetEqs ga (ProgEq pat trm ps : rt) =
do mPat <- resolvePattern ga pat
case mPat of
Nothing -> do resolve ga trm
resolveLetEqs ga rt
Just nPat -> do
newPat <- anaPattern nPat
let bs = extractVars newPat
checkUniqueVars bs
mapM_ addLocalVar bs
mTrm <- resolve ga trm
case mTrm of
Nothing -> resolveLetEqs ga rt
Just newTrm -> do
eqs <- resolveLetEqs ga rt
return (ProgEq newPat newTrm ps : eqs)
mkPatAppl :: Term -> Term -> [Pos] -> Term
mkPatAppl op arg qs =
case op of
QualVar (VarDecl i (MixfixType []) _ _) ->
ResolvedMixTerm i [arg] qs
_ -> ApplTerm op arg qs
toMixTerm :: Id -> [Term] -> [Pos] -> Term
toMixTerm i ar qs =
if i == applId then assert (length ar == 2) $
let [op, arg] = ar in mkPatAppl op arg qs
else if i == tupleId || i == unitId then
mkTupleTerm ar qs
else if isUnknownId i then
QualVar $ VarDecl (simpleIdToId $ unToken i)
(MixfixType []) Other qs
else ResolvedMixTerm i ar qs
getKnowns :: Id -> Knowns
getKnowns (Id ts cs _) = Set.union (Set.fromList (map tokStr ts)) $
Set.unions (map getKnowns cs)
resolvePattern :: GlobalAnnos -> Term -> State Env (Maybe Term)
resolvePattern ga = resolver ga (unknownId : builtinIds)
resolve :: GlobalAnnos -> Term -> State Env (Maybe Term)
resolve ga = resolver ga builtinIds
resolver :: GlobalAnnos -> [Id] -> Term
-> State Env (Maybe Term)
resolver ga bs trm =
do ass <- gets assumps
vs <- gets localVars
oldDs <- gets envDiags
ps@((_, _, m), _) <- gets preIds
ks = Set.union (Set.fromList (tokStr exprTok: inS :
map (:[]) ":{}[](),"))
$ Set.unions $ map getKnowns ids
chart<- iterateCharts ga [trm] $
initChart (listRules (m + 3) ga ++
(initRules ps bs
ids)) (if unknownId `elem` bs then ks else Set.empty)
let Result ds mr = getResolved showPretty (posOfTerm trm)
toMixTerm chart
addDiags ds
newDs <- gets envDiags
if length newDs > length oldDs then return Nothing else return mr
builtinIds :: [Id]
builtinIds = [unitId, parenId, tupleId, exprId, typeId, applId]
initRules :: (PrecMap, Set.Set Id) -> [Id] -> [Id] -> [Rule]
initRules (pm@(_, _, m), ps) bs is =
map ( \ i -> mixRule (getIdPrec pm ps i) i)
(bs ++ is) ++
map ( \ i -> (protect i, m + 3, getPlainTokenList i))
(filter isMixfix is)