MixAna.hs revision da2b959c50c95309d8eb8b24174249c2847e74b5
{- |
Module : $Header$
Description : mixfix analysis for terms
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
Mixfix analysis of terms and patterns, type annotations are also analysed
-}
module HasCASL.MixAna where
import Common.GlobalAnnotations
import Common.Result
import Common.Id
import Common.DocUtils
import Common.Earley
import Common.Lexer
import Common.Prec
import Common.ConvertMixfixToken
import Common.Lib.State
import Common.AnnoState
import qualified Data.Map as Map
import qualified Data.Set as Set
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.PrintAs
import HasCASL.Unify
import HasCASL.VarDecl
import HasCASL.Le
import HasCASL.HToken
import HasCASL.ParseTerm
import HasCASL.TypeAna
import qualified Text.ParserCombinators.Parsec as P
import Data.Maybe
import Data.List (partition)
import Control.Exception (assert)
addType :: Term -> Term -> Term
addType (MixTypeTerm q ty ps) t = TypedTerm t q ty ps
addType _ _ = error "addType"
isCompoundList :: Set.Set [Id] -> [Term] -> Bool
isCompoundList compIds l =
maybe False (flip Set.member compIds) $ sequence $ map termToId l
isTypeList :: Env -> [Term] -> Bool
isTypeList e l = case sequence $ map termToType l of
Nothing -> False
Just ts ->
let Result ds ml =
mapM ( \ t -> anaTypeM (Nothing, t) e) ts
in isJust ml && not (hasErrors ds)
termToType :: Term -> Maybe Type
termToType t =
case P.runParser (parseType << P.eof) (emptyAnnos ()) "" $ showDoc t "" of
Right x -> Just x
_ -> Nothing
termToId :: Term -> Maybe Id
termToId t = case P.parse (uninstOpId << P.eof) "" $ showDoc t "" of
Right x -> Just x
_ -> Nothing
iterateCharts :: GlobalAnnos -> Set.Set [Id] -> [Term] -> Chart Term
-> State Env (Chart Term)
iterateCharts ga compIds terms chart =
do e <- get
let self = iterateCharts ga compIds
oneStep = nextChart addType toMixTerm ga chart
vs = localVars e
tm = typeMap e
case terms of
[] -> return chart
t:tt -> do
let recurse trm = self tt $
oneStep (trm, exprTok {tokPos = getRange trm})
case t of
MixfixTerm ts -> self (ts ++ tt) chart
MixTypeTerm q typ ps -> do
mTyp <- anaStarType typ
case mTyp of
Nothing -> recurse t
Just nTyp -> self tt $ oneStep
(MixTypeTerm q (monoType nTyp) ps,
typeTok {tokPos = ps})
BracketTerm b ts ps ->
let bres = self (expandPos TermToken
(getBrackets b) ts ps ++ tt) chart
in case (b, ts) of
(Squares, _ : _) ->
if isCompoundList compIds ts then bres
else if isTypeList e ts then self tt $ oneStep
(t, typeInstTok {tokPos = ps})
else bres
_ -> bres
QualVar (VarDecl v typ ok ps) -> do
mTyp <- anaStarType typ
case mTyp of
Nothing -> recurse t
Just nType -> recurse $ QualVar $
VarDecl v (monoType nType) ok ps
QualOp b (InstOpId v ts qs) sc ps -> do
mSc <- anaTypeScheme sc
newTs <- anaInstTypes ts
case mSc of
Nothing -> recurse t
Just nSc -> do
case findOpId e v nSc of
Nothing -> addDiags [mkDiag Error
"operation not found" v]
_ -> return ()
recurse $ QualOp b (InstOpId v newTs qs) nSc ps
QuantifiedTerm quant decls hd ps -> do
newDs <- mapM (anaddGenVarDecl False) decls
mt <- resolve ga hd
putLocalVars vs
putTypeMap tm
let newT = case mt of Just trm -> trm
_ -> hd
recurse $ QuantifiedTerm quant (catMaybes newDs) newT ps
LambdaTerm decls part hd ps -> do
mDecls <- mapM (resolvePattern ga) decls
let anaDecls = catMaybes mDecls
bs = concatMap extractVars anaDecls
checkUniqueVars bs
mapM_ (addLocalVar False) bs
mt <- resolve ga hd
putLocalVars vs
recurse $ LambdaTerm anaDecls part (maybe hd id mt) ps
CaseTerm hd eqs ps -> do
mt <- resolve ga hd
newEs <- resolveCaseEqs ga eqs
recurse $ CaseTerm (maybe hd id mt) newEs ps
LetTerm b eqs hd ps -> do
newEs <- resolveLetEqs ga eqs
mt <- resolve ga hd
putLocalVars vs
recurse $ LetTerm b newEs (maybe hd id mt) ps
TermToken tok -> do
let (ds1, trm) = convertMixfixToken
(literal_annos ga)
ResolvedMixTerm TermToken tok
addDiags ds1
self tt $ oneStep $
case trm of
TermToken _ -> (trm, tok)
_ -> (trm, exprTok
{tokPos = tokPos tok})
AsPattern vd p ps -> do
mp <- resolvePattern ga p
let newP = case mp of Just pat -> pat
Nothing -> p
recurse $ AsPattern vd newP ps
TypedTerm trm k ty ps -> do
-- assume that type is analysed
mt <- resolve ga trm
recurse $ TypedTerm (maybe trm id mt) k ty ps
_ -> error ("iterCharts: " ++ show t)
-- * equation stuff
resolveCaseEq :: GlobalAnnos -> ProgEq -> State Env (Maybe ProgEq)
resolveCaseEq ga (ProgEq p t ps) =
do mp <- resolvePattern ga p
case mp of
Nothing -> return Nothing
Just newP -> do
let bs = extractVars newP
checkUniqueVars bs
vs <- gets localVars
mapM_ (addLocalVar False) bs
mtt <- resolve ga t
putLocalVars vs
return $ case mtt of
Nothing -> Nothing
Just newT -> Just $ ProgEq newP newT ps
resolveCaseEqs :: GlobalAnnos -> [ProgEq] -> State Env [ProgEq]
resolveCaseEqs _ [] = return []
resolveCaseEqs ga (eq : rt) =
do mEq <- resolveCaseEq ga eq
eqs <- resolveCaseEqs ga rt
return $ case mEq of
Nothing -> eqs
Just newEq -> newEq : eqs
resolveLetEqs :: GlobalAnnos -> [ProgEq] -> State Env [ProgEq]
resolveLetEqs _ [] = return []
resolveLetEqs ga (ProgEq pat trm ps : rt) =
do mPat <- resolvePattern ga pat
case mPat of
Nothing -> do resolve ga trm
resolveLetEqs ga rt
Just newPat -> do
let bs = extractVars newPat
checkUniqueVars bs
mapM_ (addLocalVar False) bs
mTrm <- resolve ga trm
case mTrm of
Nothing -> resolveLetEqs ga rt
Just newTrm -> do
eqs <- resolveLetEqs ga rt
return (ProgEq newPat newTrm ps : eqs)
mkPatAppl :: Term -> Term -> Range -> Term
mkPatAppl op arg qs =
case op of
QualVar (VarDecl i (MixfixType []) _ _) ->
ResolvedMixTerm i [arg] qs
_ -> ApplTerm op arg qs
toMixTerm :: Id -> [Term] -> Range -> Term
toMixTerm i ar qs =
if i == applId then assert (length ar == 2) $
let [op, arg] = ar in mkPatAppl op arg qs
else if i == tupleId || i == unitId then
mkTupleTerm ar qs
else case unPolyId i of
Just j@(Id ts [] ps) ->
if isMixfix j && isSingle ar then
ResolvedMixTerm j [] qs
else assert (length ar == 1 + placeCount j) $
let (toks, _) = splitMixToken ts
(far, _tar : sar) = splitAt (placeCount $ Id toks [] ps) ar
in ResolvedMixTerm j (far ++ sar) qs
_ -> ResolvedMixTerm i ar qs
getKnowns :: Id -> Set.Set Token
getKnowns (Id ts cs _) = Set.union (Set.fromList ts) $
Set.unions (map getKnowns cs)
resolvePattern :: GlobalAnnos -> Pattern -> State Env (Maybe Pattern)
resolvePattern = resolver True
resolve :: GlobalAnnos -> Term -> State Env (Maybe Term)
resolve = resolver False
resolver :: Bool -> GlobalAnnos -> Term -> State Env (Maybe Term)
resolver isPat ga trm =
do ass <- gets assumps
vs <- gets localVars
ps <- gets preIds
compIds <- gets getCompoundLists
let (addRule, ruleS, sIds) = makeRules ga ps (getPolyIds ass)
$ Set.union (Map.keysSet ass) $ Map.keysSet vs
chart <- iterateCharts ga compIds [trm] $ initChart addRule ruleS
let Result ds mr = getResolved
(showDoc . parenTerm) (getRange trm)
toMixTerm chart
addDiags ds
if isPat then case mr of
Nothing -> return mr
Just pat -> fmap Just $ anaPattern sIds pat
else return mr
getPolyIds :: Assumps -> Set.Set Id
getPolyIds = Set.unions . map ( \ (i, OpInfos l) ->
foldr ( \ oi s -> case opType oi of
TypeScheme (_ : _) _ _ -> Set.insert i s
_ -> s) Set.empty l) . Map.toList .
Map.filterWithKey ( \ (Id _ cs _) _ -> null cs)
getCompound :: Id -> [Id]
getCompound (Id _ cs _) = cs
getCompoundLists :: Env -> Set.Set [Id]
getCompoundLists e = Set.delete [] $ Set.map getCompound $ Set.union
(Map.keysSet $ assumps e) $ Map.keysSet $ typeMap e
uTok :: Token
uTok = mkSimpleId "_"
builtinIds :: [Id]
builtinIds = [unitId, parenId, tupleId, exprId, typeId, applId]
makeRules :: GlobalAnnos -> (PrecMap, Set.Set Id) -> Set.Set Id
-> Set.Set Id -> (Token -> [Rule], Rules, Set.Set Id)
makeRules ga ps@(p, _) polyIds aIds =
let (sIds, ids) = Set.partition isSimpleId aIds
ks = Set.fold (Set.union . getKnowns) Set.empty ids
rIds = Set.union ids $ Set.intersection sIds $ Set.map simpleIdToId ks
m2 = maxWeight p + 2
in ( \ tok -> if isSimpleToken tok
&& not (Set.member tok ks)
|| tok == uTok then
[(simpleIdToId tok, m2, [tok])] else []
, partitionRules $ listRules m2 ga ++
initRules ps (Set.toList polyIds) builtinIds (Set.toList rIds)
, sIds)
initRules :: (PrecMap, Set.Set Id) -> [Id] -> [Id] -> [Id] -> [Rule]
initRules (p, ps) polyIds bs is =
map ( \ i -> mixRule (getIdPrec p ps i) i)
(bs ++ is) ++
map ( \ i -> (protect i, maxWeight p + 3, getPlainTokenList i))
(filter isMixfix is) ++
-- identifiers with a positive number of type arguments
map ( \ i -> let j = polyId i in
(j, getIdPrec p ps i, getTokenPlaceList j)) polyIds ++
map ( \ i -> let j = polyId i in
(protect j, maxWeight p + 3, getPlainTokenList j))
(filter isMixfix polyIds)
polyId :: Id -> Id
polyId (Id ts _ ps) = let (toks, pls) = splitMixToken ts in
Id (toks ++ [typeInstTok] ++ pls) [] ps
unPolyId :: Id -> Maybe Id
unPolyId (Id ts cs ps) = let (ft, rt) = partition (== typeInstTok) ts in
case ft of
[_] -> Just $ Id rt cs ps
_ -> Nothing
-- create fresh type vars for unknown ids tagged with type MixfixType [].
anaPattern :: Set.Set Id -> Pattern -> State Env Pattern
anaPattern s pat = case pat of
QualVar vd -> do newVd <- checkVarDecl vd
return $ QualVar newVd
ResolvedMixTerm i pats ps | null pats &&
(isSimpleId i || i == simpleIdToId uTok) &&
not (Set.member i s) -> do
(tvar, c) <- toEnvState $ freshVar $ posOfId i
return $ QualVar $ VarDecl i (TypeName tvar rStar c) Other ps
| otherwise -> do
l <- mapM (anaPattern s) pats
return $ ResolvedMixTerm i l ps
ApplTerm p1 p2 ps -> do
p3 <- anaPattern s p1
p4 <- anaPattern s p2
return $ ApplTerm p3 p4 ps
TupleTerm pats ps -> do
l <- mapM (anaPattern s) pats
return $ TupleTerm l ps
TypedTerm p q ty ps -> do
case p of
QualVar (VarDecl v (MixfixType []) ok qs) ->
let newVd = VarDecl v ty ok (qs `appRange` ps) in
return $ QualVar newVd
_ -> do newP <- anaPattern s p
return $ TypedTerm newP q ty ps
AsPattern vd p2 ps -> do
newVd <- checkVarDecl vd
p4 <- anaPattern s p2
return $ AsPattern newVd p4 ps
_ -> return pat
where checkVarDecl vd@(VarDecl v t ok ps) = case t of
MixfixType [] -> do
(tvar, c) <- toEnvState $ freshVar $ posOfId v
return $ VarDecl v (TypeName tvar rStar c) ok ps
_ -> return vd