MixAna.hs revision c4d4df505f3ca488978629c65f4fd15a3ba2833a
{- |
Module : $Header$
Description : mixfix analysis for terms
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
Mixfix analysis of terms and patterns, type annotations are also analysed
-}
module HasCASL.MixAna
( resolve
, anaPolyId
, makeRules
, getPolyIds
, iterateCharts
, toMixTerm
) where
import Common.GlobalAnnotations
import Common.Result
import Common.Id
import Common.DocUtils
import Common.Earley
import Common.Lexer
import Common.Prec
import Common.ConvertMixfixToken
import Common.Lib.State
import Common.AnnoState
import Common.Anno_Parser
import qualified Data.Map as Map
import qualified Data.Set as Set
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.PrintAs
import HasCASL.Unify
import HasCASL.VarDecl
import HasCASL.Le
import HasCASL.ParseTerm
import HasCASL.TypeAna
import qualified Text.ParserCombinators.Parsec as P
import Data.Maybe
import Control.Exception (assert)
addType :: Term -> Term -> Term
addType (MixTypeTerm q ty ps) t = TypedTerm t q ty ps
addType _ _ = error "addType"
-- | try to reparse terms as a compound list
isCompoundList :: Set.Set [Id] -> [Term] -> Bool
isCompoundList compIds =
maybe False (flip Set.member compIds) . mapM reparseAsId
isTypeList :: Env -> [Term] -> Bool
isTypeList e l = case mapM termToType l of
Nothing -> False
Just ts ->
let Result ds ml = mapM ( \ t -> anaTypeM (Nothing, t) e) ts
in isJust ml && not (hasErrors ds)
termToType :: Term -> Maybe Type
termToType t = case P.runParser ((case getPosList t of
[] -> return ()
p : _ -> P.setPosition $ fromPos p)
>> parseType << P.eof) (emptyAnnos ()) "" $ showDoc t "" of
Right x -> Just x
_ -> Nothing
anaPolyId :: PolyId -> TypeScheme -> State Env (Maybe TypeScheme)
anaPolyId (PolyId i@(Id _ cs _) _ _) sc = do
mSc <- anaTypeScheme sc
case mSc of
Nothing -> return Nothing
Just newSc@(TypeScheme tvars _ _) -> do
e <- get
let ids = Set.unions
[ Map.keysSet $ classMap e
, Map.keysSet $ typeMap e
, Map.keysSet $ assumps e ]
es = filter (not . flip Set.member ids) cs
addDiags $ map (\ j -> mkDiag Warning
"unexpected identifier in compound list" j) es
if null cs || null tvars then return () else
addDiags [mkDiag Hint "is polymorphic compound identifier" i]
return $ Just newSc
resolveQualOp :: PolyId -> TypeScheme -> State Env TypeScheme
resolveQualOp i@(PolyId j _ _) sc = do
mSc <- anaPolyId i sc
e <- get
case mSc of
Nothing -> return sc -- and previous
Just nSc -> do
if Set.null $ Set.filter ((== nSc) . opType)
$ Map.findWithDefault Set.empty j $ assumps e
then addDiags [mkDiag Error "operation not found" j]
else return ()
return nSc
iterateCharts :: GlobalAnnos -> Set.Set [Id] -> [Term] -> Chart Term
-> State Env (Chart Term)
iterateCharts ga compIds terms chart = do
e <- get
let self = iterateCharts ga compIds
oneStep = nextChart addType (toMixTerm e) ga chart
vs = localVars e
tm = typeMap e
case terms of
[] -> return chart
t : tt -> let recurse trm = self tt $ oneStep
(trm, exprTok {tokPos = getRange trm}) in case t of
MixfixTerm ts -> self (ts ++ tt) chart
MixTypeTerm q typ ps -> do
mTyp <- anaStarType typ
case mTyp of
Nothing -> recurse t
Just nTyp -> self tt $ oneStep
(MixTypeTerm q (monoType nTyp) ps, typeTok {tokPos = ps})
BracketTerm b ts ps ->
let bres = self (expandPos TermToken
(getBrackets b) ts ps ++ tt) chart in case (b, ts) of
(Squares, _ : _) -> if isCompoundList compIds ts then do
addDiags [mkDiag Hint "is compound list" t]
bres
else if isTypeList e ts then do
let testChart = oneStep (t, typeInstTok {tokPos = ps})
if null $ solveDiags testChart then do
addDiags [mkDiag Hint "is type list" t]
self tt testChart
else bres
else bres
_ -> case (b, ts, tt) of
(Parens, [QualOp b2 v sc [] _ ps2], hd@(BracketTerm Squares
ts2@(_ : _) ps3) : rtt) | isTypeList e ts2 -> do
addDiags [mkDiag Hint "is type list" ts2]
nSc <- resolveQualOp v sc
self rtt $ oneStep
( QualOp b2 v nSc (bracketTermToTypes e hd) UserGiven ps2
, exprTok {tokPos = appRange ps ps3})
_ -> bres
QualVar (VarDecl v typ ok ps) -> do
mTyp <- anaStarType typ
recurse $ maybe t ( \ nType -> QualVar $ VarDecl v (monoType nType)
ok ps) mTyp
QualOp b v sc [] k ps -> do
nSc <- resolveQualOp v sc
recurse $ QualOp b v nSc [] k ps
QuantifiedTerm quant decls hd ps -> do
newDs <- mapM (anaddGenVarDecl False) decls
mt <- resolve ga hd
putLocalVars vs
putTypeMap tm
recurse $ QuantifiedTerm quant (catMaybes newDs) (maybe hd id mt) ps
LambdaTerm decls part hd ps -> do
mDecls <- mapM (resolvePattern ga) decls
let anaDecls = catMaybes mDecls
bs = concatMap extractVars anaDecls
checkUniqueVars bs
mapM_ (addLocalVar False) bs
mt <- resolve ga hd
putLocalVars vs
recurse $ LambdaTerm anaDecls part (maybe hd id mt) ps
CaseTerm hd eqs ps -> do
mt <- resolve ga hd
newEs <- resolveCaseEqs ga eqs
recurse $ CaseTerm (maybe hd id mt) newEs ps
LetTerm b eqs hd ps -> do
newEs <- resolveLetEqs ga eqs
mt <- resolve ga hd
putLocalVars vs
recurse $ LetTerm b newEs (maybe hd id mt) ps
TermToken tok -> do
let (ds1, trm) = convertMixfixToken (literal_annos ga)
(flip ResolvedMixTerm []) TermToken tok
addDiags ds1
self tt $ oneStep $ case trm of
TermToken _ -> (trm, tok)
_ -> (trm, exprTok {tokPos = tokPos tok})
AsPattern vd p ps -> do
mp <- resolvePattern ga p
recurse $ AsPattern vd (maybe p id mp) ps
TypedTerm trm k ty ps -> do
-- assume that type is analysed
mt <- resolve ga trm
recurse $ TypedTerm (maybe trm id mt) k ty ps
_ -> error ("iterCharts: " ++ show t)
-- * equation stuff
resolveCaseEq :: GlobalAnnos -> ProgEq -> State Env (Maybe ProgEq)
resolveCaseEq ga (ProgEq p t ps) = do
mp <- resolvePattern ga p
case mp of
Nothing -> return Nothing
Just newP -> do
let bs = extractVars newP
checkUniqueVars bs
vs <- gets localVars
mapM_ (addLocalVar False) bs
mtt <- resolve ga t
putLocalVars vs
return $ case mtt of
Nothing -> Nothing
Just newT -> Just $ ProgEq newP newT ps
resolveCaseEqs :: GlobalAnnos -> [ProgEq] -> State Env [ProgEq]
resolveCaseEqs ga eqs = case eqs of
[] -> return []
eq : rt -> do
mEq <- resolveCaseEq ga eq
reqs <- resolveCaseEqs ga rt
return $ case mEq of
Nothing -> reqs
Just newEq -> newEq : reqs
resolveLetEqs :: GlobalAnnos -> [ProgEq] -> State Env [ProgEq]
resolveLetEqs _ [] = return []
resolveLetEqs ga eqs = case eqs of
[] -> return []
ProgEq pat trm ps : rt -> do
mPat <- resolvePattern ga pat
case mPat of
Nothing -> do
resolve ga trm
resolveLetEqs ga rt
Just newPat -> do
let bs = extractVars newPat
checkUniqueVars bs
mapM_ (addLocalVar False) bs
mTrm <- resolve ga trm
case mTrm of
Nothing -> resolveLetEqs ga rt
Just newTrm -> do
reqs <- resolveLetEqs ga rt
return $ ProgEq newPat newTrm ps : reqs
mkPatAppl :: Term -> Term -> Range -> Term
mkPatAppl op arg qs = case op of
QualVar (VarDecl i (MixfixType []) _ _) -> ResolvedMixTerm i [] [arg] qs
_ -> ApplTerm op arg qs
bracketTermToTypes :: Env -> Term -> [Type]
bracketTermToTypes e t = case t of
BracketTerm Squares tys _ ->
map (monoType . snd) $ maybe (error "bracketTermToTypes") id $
maybeResult $ mapM ( \ ty -> anaTypeM (Nothing, ty) e) $
maybe (error "bracketTermToTypes1") id $ mapM termToType tys
_ -> error "bracketTermToTypes2"
toMixTerm :: Env -> Id -> [Term] -> Range -> Term
toMixTerm e i ar qs =
if i == applId then assert (length ar == 2) $
let [op, arg] = ar in mkPatAppl op arg qs
else if i == tupleId || i == unitId then
mkTupleTerm ar qs
else case unPolyId i of
Just j@(Id ts _ _) -> if isMixfix j && isSingle ar then
ResolvedMixTerm j (bracketTermToTypes e $ head ar) [] qs
else assert (length ar == 1 + placeCount j) $
let (far, tar : sar) =
splitAt (placeCount $ mkId $ fst $ splitMixToken ts) ar
in ResolvedMixTerm j (bracketTermToTypes e tar) (far ++ sar) qs
_ -> ResolvedMixTerm i [] ar qs
getKnowns :: Id -> Set.Set Token
getKnowns (Id ts cs _) =
Set.union (Set.fromList ts) $ Set.unions $ map getKnowns cs
resolvePattern :: GlobalAnnos -> Term -> State Env (Maybe Term)
resolvePattern = resolver True
resolve :: GlobalAnnos -> Term -> State Env (Maybe Term)
resolve = resolver False
resolver :: Bool -> GlobalAnnos -> Term -> State Env (Maybe Term)
resolver isPat ga trm = do
e <- get
let ass = assumps e
vs = localVars e
ps = preIds e
compIds = getCompoundLists e
(addRule, ruleS, sIds) = makeRules ga ps (getPolyIds ass)
$ Set.union (Map.keysSet ass) $ Map.keysSet vs
chart <- iterateCharts ga compIds [trm] $ initChart addRule ruleS
let Result ds mr = getResolved (showDoc . parenTerm) (getRange trm)
(toMixTerm e) chart
addDiags ds
if isPat then case mr of
Nothing -> return mr
Just pat -> fmap Just $ anaPattern sIds pat
else return mr
getPolyIds :: Assumps -> Set.Set Id
getPolyIds = Set.unions . map ( \ (i, s) ->
Set.fold ( \ oi -> case opType oi of
TypeScheme (_ : _) _ _ -> Set.insert i
_ -> id) Set.empty s) . Map.toList
uTok :: Token
uTok = mkSimpleId "_"
builtinIds :: [Id]
builtinIds = [unitId, parenId, tupleId, exprId, typeId, applId]
makeRules :: GlobalAnnos -> (PrecMap, Set.Set Id) -> Set.Set Id
-> Set.Set Id -> (Token -> [Rule], Rules, Set.Set Id)
makeRules ga ps@(p, _) polyIds aIds =
let (sIds, ids) = Set.partition isSimpleId aIds
ks = Set.fold (Set.union . getKnowns) Set.empty ids
rIds = Set.union ids $ Set.intersection sIds $ Set.map simpleIdToId ks
m2 = maxWeight p + 2
in ( \ tok -> if isSimpleToken tok
&& not (Set.member tok ks)
|| tok == uTok then
[(simpleIdToId tok, m2, [tok])] else []
, partitionRules $ listRules m2 ga ++
initRules ps (Set.toList polyIds) builtinIds (Set.toList rIds)
, sIds)
initRules :: (PrecMap, Set.Set Id) -> [Id] -> [Id] -> [Id] -> [Rule]
initRules (p, ps) polyIds bs is =
map ( \ i -> mixRule (getIdPrec p ps i) i)
(bs ++ is) ++
map ( \ i -> (protect i, maxWeight p + 3, getPlainTokenList i))
(filter isMixfix is) ++
-- identifiers with a positive number of type arguments
map ( \ i -> ( polyId i, getIdPrec p ps i
, getPolyTokenList i)) polyIds ++
map ( \ i -> ( protect $ polyId i, maxWeight p + 3
, getPlainPolyTokenList i)) (filter isMixfix polyIds)
-- create fresh type vars for unknown ids tagged with type MixfixType [].
anaPattern :: Set.Set Id -> Term -> State Env Term
anaPattern s pat = case pat of
QualVar vd -> do
newVd <- checkVarDecl vd
return $ QualVar newVd
ResolvedMixTerm i tys pats ps | null pats && null tys &&
(isSimpleId i || i == simpleIdToId uTok) &&
not (Set.member i s) -> do
(tvar, c) <- toEnvState $ freshVar i
return $ QualVar $ VarDecl i (TypeName tvar rStar c) Other ps
| otherwise -> do
l <- mapM (anaPattern s) pats
return $ ResolvedMixTerm i tys l ps
ApplTerm p1 p2 ps -> do
p3 <- anaPattern s p1
p4 <- anaPattern s p2
return $ ApplTerm p3 p4 ps
TupleTerm pats ps -> do
l <- mapM (anaPattern s) pats
return $ TupleTerm l ps
TypedTerm p q ty ps -> do
case p of
QualVar (VarDecl v (MixfixType []) ok qs) ->
return $ QualVar $ VarDecl v ty ok $ appRange qs ps
_ -> do
newP <- anaPattern s p
return $ TypedTerm newP q ty ps
AsPattern vd p2 ps -> do
newVd <- checkVarDecl vd
p4 <- anaPattern s p2
return $ AsPattern newVd p4 ps
_ -> return pat
where checkVarDecl vd@(VarDecl v t ok ps) = case t of
MixfixType [] -> do
(tvar, c) <- toEnvState $ freshVar v
return $ VarDecl v (TypeName tvar rStar c) ok ps
_ -> return vd