DataAna.hs revision f3a94a197960e548ecd6520bb768cb0d547457bb
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2002-2003
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : non-portable (MonadState)
analyse alternatives of data types
-}
module HasCASL.DataAna where
import Data.Maybe
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.Id
import Common.Result
import Common.AS_Annotation
import HasCASL.As
import HasCASL.Le
import HasCASL.TypeAna
import HasCASL.AsUtils
import HasCASL.Builtin
import HasCASL.Unify
mkSelId :: [Pos] -> String -> Int -> Int -> Id
mkSelId p str n m = mkId
[Token (str ++ "_" ++ show n ++ "_" ++ show m) p]
mkSelVar :: Int -> Int -> Type -> VarDecl
mkSelVar n m ty = VarDecl (mkSelId (get_pos ty) "x" n m) ty Other []
genTuple :: Int -> Int -> [Selector] -> [VarDecl]
genTuple _ _ [] = []
genTuple n m (Select _ ty _ : sels) =
mkSelVar n m ty : genTuple n (m + 1) sels
genSelVars :: Int -> [[Selector]] -> [[VarDecl]]
genSelVars _ [] = []
genSelVars n (ts:sels) =
genTuple n 1 ts : genSelVars (n + 1) sels
makeSelTupleEqs :: DataPat -> Term -> Int -> Int -> [Selector] -> [Named Term]
makeSelTupleEqs dt ct n m (Select mi ty p : sels) =
let sc = getSelType dt p ty in
(case mi of
Just i -> let
vt = QualVar $ mkSelVar n m ty
eq = mkEqTerm eqId [] (mkApplTerm (mkOpTerm i sc) [ct]) vt
in [NamedSen ("ga_select_" ++ show i) True eq]
_ -> [])
++ makeSelTupleEqs dt ct n (m + 1) sels
makeSelTupleEqs _ _ _ _ [] = []
makeSelEqs :: DataPat -> Term -> Int -> [[Selector]] -> [Named Term]
makeSelEqs dt ct n (sel:sels) =
makeSelTupleEqs dt ct n 1 sel
++ makeSelEqs dt ct (n + 1) sels
makeSelEqs _ _ _ _ = []
makeAltSelEqs :: DataPat -> AltDefn -> [Named Term]
makeAltSelEqs dt@(_, args, _) (Construct mc ts p sels) =
case mc of
Nothing -> []
Just c -> let sc = TypeScheme args (getConstrType dt p ts) []
newSc = generalize sc
vars = genSelVars 1 sels
as = map ( \ vs -> mkTupleTerm (map QualVar vs) []) vars
ct = mkApplTerm (mkOpTerm c newSc) as
in map (mapNamed (mkForall (map GenTypeVarDecl args
++ map GenVarDecl (concat vars))))
$ makeSelEqs dt ct 1 sels
makeDataSelEqs :: DataEntry -> Kind -> [Named Sentence]
makeDataSelEqs (DataEntry _ i _ args alts) k =
map (mapNamed Formula) $
concatMap (makeAltSelEqs(i, args, k)) alts
anaAlts :: [DataPat] -> DataPat -> [Alternative] -> TypeMap -> Result [AltDefn]
anaAlts tys dt alts tm =
do l <- mapM (anaAlt tys dt tm) alts
Result (checkUniqueness $ catMaybes $
map ( \ (Construct i _ _ _) -> i) l) $ Just ()
return l
anaAlt :: [DataPat] -> DataPat -> TypeMap -> Alternative -> Result AltDefn
anaAlt _ (_, args, _) tm (Subtype ts _) =
do l <- mapM ( \ t -> anaStarTypeR t tm) ts
return $ Construct Nothing (map (mkGenVars args . snd) l) Partial []
anaAlt tys dt tm (Constructor i cs p _) =
do newCs <- mapM (anaComps tys dt tm) cs
let sels = map snd newCs
Result (checkUniqueness $ catMaybes $
map ( \ (Select s _ _) -> s ) $ concat sels) $ Just ()
return $ Construct (Just i) (map fst newCs) p sels
anaComps :: [DataPat] -> DataPat -> TypeMap -> [Component]
-> Result (Type, [Selector])
anaComps tys rt tm cs =
do newCs <- mapM (anaComp tys rt tm) cs
return (mkProductType (map fst newCs) [], map snd newCs)
anaComp :: [DataPat] -> DataPat -> TypeMap -> Component
-> Result (Type, Selector)
anaComp tys rt tm (Selector s p t _ _) =
do ct <- anaCompType tys rt t tm
return (ct, Select (Just s) ct p)
anaComp tys rt tm (NoSelector t) =
do ct <- anaCompType tys rt t tm
return (ct, Select Nothing ct Partial)
getSelType :: DataPat -> Partiality -> Type -> TypeScheme
getSelType dp@(_, args, _) p rt = let dt = typeIdToType dp in
generalize $ TypeScheme args ((case p of
Partial -> addPartiality [dt]
Total -> id) (FunType dt FunArr rt [])) []
anaCompType :: [DataPat] -> DataPat -> Type -> TypeMap -> Result Type
anaCompType tys (_, as, _) t tm = do
(_, ct1) <- anaStarTypeR t tm
let ct = mkGenVars as ct1
ds = unboundTypevars as ct
if null ds then return () else Result ds Nothing
mapM (checkMonomorphRecursion ct tm) tys
return ct
checkMonomorphRecursion :: Type -> TypeMap -> DataPat -> Result ()
checkMonomorphRecursion t tm p@(i, _, _) =
let rt = typeIdToType p in
if occursIn tm i t then
if lesserType tm t rt || lesserType tm rt t then return ()
else Result [Diag Error ("illegal polymorphic recursion"
++ expected rt t) $ get_pos t] Nothing
else return ()
occursIn :: TypeMap -> TypeId -> Type -> Bool
occursIn tm i = any (relatedTypeIds tm i) . Set.toList . idsOf (const True)
relatedTypeIds :: TypeMap -> TypeId -> TypeId -> Bool
relatedTypeIds tm i1 i2 =
not $ Set.null $ Set.intersection (allRelIds tm i1) $ allRelIds tm i2
allRelIds :: TypeMap -> TypeId -> Set.Set TypeId
allRelIds tm i = Set.union (superIds tm i) $ subIds tm i
-- | super type ids
superIds :: TypeMap -> Id -> Set.Set Id
superIds tm = supIds tm Set.empty . Set.singleton
subIds :: TypeMap -> Id -> Set.Set Id
subIds tm i = foldr ( \ j s ->
if Set.member i $ superIds tm j then
supIds tm known new =
if Set.null new then known else
let more = Set.unions $ map superTypeToId $
concatMap ( \ i -> superTypes
$ Map.findWithDefault starTypeInfo i tm)
$ Set.toList new
newKnown = Set.union known new
in supIds tm newKnown (more Set.\\ newKnown)
superTypeToId :: Type -> Set.Set Id
superTypeToId t =
case t of
TypeName i _ _ -> Set.singleton i
_ -> Set.empty