DataAna.hs revision 66b0bf1e3102c83f5728cf6cfecbd07444276a5f
{- |
Module : $Header$
Description : analysis of data type declarations
Copyright : (c) Christian Maeder and Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
analyse alternatives of data types
-}
module HasCASL.DataAna
( DataPat(..)
, toDataPat
, getConstrScheme
, getSelScheme
, anaAlts
, makeDataSelEqs
, inductionScheme
) where
import Data.Maybe
import qualified Data.Map as Map
import qualified Data.Set as Set
import Common.Id
import Common.Result
import Common.AS_Annotation
import HasCASL.As
import HasCASL.Le
import HasCASL.TypeAna
import HasCASL.AsUtils
import HasCASL.Builtin
import HasCASL.Unify
-- | description of polymorphic data types
data DataPat = DataPat Id [TypeArg] RawKind Type
mkVarDecl :: Id -> Type -> VarDecl
mkVarDecl i t = VarDecl i t Other nullRange
mkSelId :: Range -> String -> Int -> Int -> Id
mkSelId p str n m = mkId
[Token (str ++ "_" ++ (if n < 1 then "" else show n ++ "_") ++ show m) p]
mkSelVar :: Int -> Int -> Type -> VarDecl
mkSelVar n m ty = mkVarDecl (mkSelId (getRange ty) "x" n m) ty
genTuple :: Int -> Int -> [Selector] -> [VarDecl]
genTuple _ _ [] = []
genTuple n m (Select _ ty _ : sels) =
mkSelVar n m ty : genTuple n (m + 1) sels
genSelVars :: Int -> [[Selector]] -> [[VarDecl]]
genSelVars n sels = case sels of
[ts] -> [genTuple 0 1 ts]
_ -> if all (\ l -> not (null l) && null (tail l)) sels
then map (: []) $ genTuple 0 1 $ map head sels
else genSelVarsAux n sels
genSelVarsAux :: Int -> [[Selector]] -> [[VarDecl]]
genSelVarsAux _ [] = []
genSelVarsAux n (ts : sels) =
genTuple n 1 ts : genSelVarsAux (n + 1) sels
makeSelTupleEqs :: DataPat -> Term -> Int -> Int -> [Selector] -> [Named Term]
makeSelTupleEqs dt ct n m (Select mi ty p : sels) =
let sc = getSelScheme dt p ty
in (case mi of
Just i -> let
vt = QualVar $ mkSelVar n m ty
eq = mkEqTerm eqId ty nullRange
(mkApplTerm (mkOpTerm i sc) [ct]) vt
in [makeNamed ("ga_select_" ++ show i) eq]
_ -> [])
++ makeSelTupleEqs dt ct n (m + 1) sels
makeSelTupleEqs _ _ _ _ [] = []
makeSelEqs :: DataPat -> Term -> Int -> [[Selector]] -> [Named Term]
makeSelEqs dt ct n (sel:sels) =
makeSelTupleEqs dt ct n 1 sel
++ makeSelEqs dt ct (n + 1) sels
makeSelEqs _ _ _ _ = []
makeAltSelEqs :: DataPat -> AltDefn -> [Named Term]
makeAltSelEqs dt@(DataPat _ iargs _ _) (Construct mc ts p sels) =
case mc of
Nothing -> []
Just c -> let
vars = genSelVars 1 sels
ars = mkSelArgs vars
ct = mkApplTerm (mkOpTerm c $ getConstrScheme dt p ts) ars
in map (mapNamed (mkForall (map GenTypeVarDecl iargs
++ map GenVarDecl (concat vars)))) $ makeSelEqs dt ct 1 sels
mkSelArgs :: [[VarDecl]] -> [Term]
mkSelArgs = map (\ vs -> mkTupleTerm (map QualVar vs) nullRange)
getConstrScheme :: DataPat -> Partiality -> [Type] -> TypeScheme
getConstrScheme (DataPat _ args _ rt) p ts =
TypeScheme args (getFunType rt p ts) nullRange
getSelScheme :: DataPat -> Partiality -> Type -> TypeScheme
getSelScheme (DataPat _ args _ rt) p t =
TypeScheme args (getSelType rt p t) nullRange
-- | remove variances from generalized type arguments
toDataPat :: DataEntry -> DataPat
toDataPat (DataEntry im i _ args rk _) = let j = Map.findWithDefault i i im in
DataPat j (map nonVarTypeArg args) rk $ patToType j args rk
-- | create selector equations for a data type
makeDataSelEqs :: DataPat -> [AltDefn] -> [Named Sentence]
makeDataSelEqs dp = map (mapNamed Formula) . concatMap (makeAltSelEqs dp)
-- | analyse the alternatives of a data type
anaAlts :: [DataPat] -> DataPat -> [Alternative] -> Env -> Result [AltDefn]
anaAlts tys dt alts te =
do l <- mapM (anaAlt tys dt te) alts
Result (checkUniqueness $ catMaybes $
map ( \ (Construct i _ _ _) -> i) l) $ Just ()
return l
anaAlt :: [DataPat] -> DataPat -> Env -> Alternative
-> Result AltDefn
anaAlt _ _ te (Subtype ts _) =
do l <- mapM ( \ t -> anaStarTypeM t te) ts
return $ Construct Nothing (Set.toList $ Set.fromList $ map snd l)
Partial []
anaAlt tys dt te (Constructor i cs p _) =
do newCs <- mapM (anaComps tys dt te) cs
let sels = map snd newCs
Result (checkUniqueness $ catMaybes $
map ( \ (Select s _ _) -> s ) $ concat sels) $ Just ()
return $ Construct (Just i) (map fst newCs) p sels
anaComps :: [DataPat] -> DataPat -> Env -> [Component]
-> Result (Type, [Selector])
anaComps tys rt te cs =
do newCs <- mapM (anaComp tys rt te) cs
return (mkProductType $ map fst newCs, map snd newCs)
anaComp :: [DataPat] -> DataPat -> Env -> Component
-> Result (Type, Selector)
anaComp tys rt te (Selector s _ t _ _) =
do ct <- anaCompType tys rt t te
let (p, nct) = case getTypeAppl ct of
(TypeName i _ _, [lt]) | i == lazyTypeId -> (Partial, lt)
_ -> (Total, ct)
return (nct, Select (Just s) nct p)
anaComp tys rt te (NoSelector t) =
do ct <- anaCompType tys rt t te
return (ct, Select Nothing ct Partial)
anaCompType :: [DataPat] -> DataPat -> Type -> Env -> Result Type
anaCompType tys (DataPat _ tArgs _ _) t te = do
(_, ct) <- anaStarTypeM t te
let ds = unboundTypevars True tArgs ct
if null ds then return () else Result ds Nothing
mapM_ (checkMonomorphRecursion ct te) tys
return $ generalize tArgs ct
checkMonomorphRecursion :: Type -> Env -> DataPat -> Result ()
checkMonomorphRecursion t te (DataPat i _ _ rt) =
case filter (\ ty -> not (lesserType te ty rt || lesserType te rt ty))
$ findSubTypes (typeMap te) i t of
[] -> return ()
ty : _ -> Result [Diag Error ("illegal polymorphic recursion"
++ expected rt ty) $ getRange ty] Nothing
findSubTypes :: TypeMap -> Id -> Type -> [Type]
findSubTypes tm i t = case getTypeAppl t of
(TypeName j _ _, args) -> if relatedTypeIds tm i j then [t]
else concatMap (findSubTypes tm i) args
(topTy, args) -> concatMap (findSubTypes tm i) $ topTy : args
relatedTypeIds :: TypeMap -> Id -> Id -> Bool
relatedTypeIds tm i1 i2 =
not $ Set.null $ Set.intersection (allRelIds tm i1) $ allRelIds tm i2
allRelIds :: TypeMap -> Id -> Set.Set Id
allRelIds tm i = Set.union (superIds tm i) $ subIds tm i
subIds :: TypeMap -> Id -> Set.Set Id
subIds tm i = foldr ( \ j s ->
if Set.member i $ superIds tm j then
mkPredVar :: DataPat -> VarDecl
mkPredVar (DataPat i _ _ rt) = let ps = posOfId i in
mkVarDecl (if isSimpleId i then mkId [mkSimpleId $ "p_" ++ show i]
else Id [mkSimpleId "p"] [i] ps) (predType ps rt)
mkPredAppl :: DataPat -> Term -> Term
mkPredAppl dp t = mkApplTerm (QualVar $ mkPredVar dp) [t]
mkPredToVarAppl :: DataPat -> VarDecl -> Term
mkPredToVarAppl dp = mkPredAppl dp . QualVar
mkConclusion :: DataPat -> Term
mkConclusion dp@(DataPat _ _ _ ty) =
let v = mkVarDecl (mkId [mkSimpleId "x"]) ty
in mkForall [GenVarDecl v] $ mkPredToVarAppl dp v
mkPremise :: Map.Map Type DataPat -> DataPat -> AltDefn -> [Term]
mkPremise m dp (Construct mc ts p sels) =
case mc of
Nothing -> []
Just c -> let
vars = genSelVars 1 sels
findHypo vd@(VarDecl _ ty _ _) =
fmap (flip mkPredToVarAppl vd) $ Map.lookup ty m
flatVars = concat vars
indHypos = catMaybes $ map findHypo flatVars
indConcl = mkPredAppl dp
$ mkApplTerm (mkOpTerm c $ getConstrScheme dp p ts)
$ mkSelArgs vars
in [mkForall (map GenVarDecl flatVars) $
if null indHypos then indConcl else
mkLogTerm implId nullRange (mkConjunct indHypos) indConcl]
mkConjunct :: [Term] -> Term
mkConjunct ts = if null ts then error "HasCASL.DataAna.mkConjunct" else
toBinJunctor andId ts nullRange
mkPremises :: Map.Map Type DataPat -> DataEntry -> [Term]
mkPremises m de@(DataEntry _ _ _ _ _ alts) =
concatMap (mkPremise m $ toDataPat de) $ Set.toList alts
joinTypeArgs :: [DataPat] -> Map.Map Id TypeArg
joinTypeArgs = foldr (\ (DataPat _ iargs _ _) m ->
foldr (\ ta -> Map.insert (getTypeVar ta) ta) m iargs) Map.empty
inductionScheme :: [DataEntry] -> Term
inductionScheme des =
let dps = map toDataPat des
m = Map.fromList $ map (\ dp@(DataPat _ _ _ ty) -> (ty, dp)) dps
in mkForall (map GenTypeVarDecl (Map.elems $ joinTypeArgs dps)
++ map (GenVarDecl . mkPredVar) dps)
$ mkLogTerm implId nullRange
(mkConjunct $ concatMap (mkPremises m) des)
$ mkConjunct $ map mkConclusion dps