DataAna.hs revision 72b9099aeec0762bae4546db3bc4b48721027bf4
{- |
Module : $Header$
Description : analysis of data type declarations
Copyright : (c) Christian Maeder and Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
analyse alternatives of data types
-}
module HasCASL.DataAna
( DataPat(..)
, toDataPat
, getConstrScheme
, getSelScheme
, anaAlts
, makeDataSelEqs
, inductionScheme
, mkVarDecl
) where
import Common.AS_Annotation
import Common.Id
import Common.Result
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.Builtin
import HasCASL.Le
import HasCASL.TypeAna
import HasCASL.Unify
import Control.Monad
import Data.Maybe (mapMaybe)
import qualified Data.Map as Map
import qualified Data.Set as Set
-- | description of polymorphic data types
data DataPat = DataPat Id [TypeArg] RawKind Type
mkVarDecl :: Id -> Type -> VarDecl
mkVarDecl i t = VarDecl i t Other nullRange
mkSelId :: Range -> String -> Int -> Int -> Id
mkSelId p str n m = mkId
[Token (str ++ "_" ++ (if n < 1 then "" else show n ++ "_") ++ show m) p]
mkSelVar :: Int -> Int -> Type -> VarDecl
mkSelVar n m ty = mkVarDecl (mkSelId (getRange ty) "x" n m) ty
genTuple :: Int -> Int -> [Selector] -> [(Selector, VarDecl)]
genTuple _ _ [] = []
genTuple n m (s@(Select _ ty _) : sels) =
(s, mkSelVar n m ty) : genTuple n (m + 1) sels
genSelVars :: Int -> [[Selector]] -> [[(Selector, VarDecl)]]
genSelVars n sels = case sels of
[ts] -> [genTuple 0 1 ts]
_ -> if all isSingle sels
then map (: []) $ genTuple 0 1 $ map head sels
else genSelVarsAux n sels
genSelVarsAux :: Int -> [[Selector]] -> [[(Selector, VarDecl)]]
genSelVarsAux _ [] = []
genSelVarsAux n (ts : sels) =
genTuple n 1 ts : genSelVarsAux (n + 1) sels
makeSelTupleEqs :: DataPat -> Term -> [(Selector, VarDecl)] -> [Named Term]
makeSelTupleEqs dt ct = concatMap (\ (Select mi ty p, v) -> case mi of
Just i -> let
sc = getSelScheme dt p ty
eq = mkEqTerm eqId ty nullRange
(mkApplTerm (mkOpTerm i sc) [ct]) $ QualVar v
in [makeNamed ("ga_select_" ++ show i) eq]
_ -> [])
makeSelEqs :: DataPat -> Term -> [[(Selector, VarDecl)]] -> [Named Term]
makeSelEqs dt = concatMap . makeSelTupleEqs dt
makeAltSelEqs :: DataPat -> AltDefn -> [Named Term]
makeAltSelEqs dt@(DataPat _ iargs _ _) (Construct mc ts p sels) =
case mc of
Nothing -> []
Just c -> let
selvars = genSelVars 1 sels
vars = map (map snd) selvars
ars = mkSelArgs vars
ct = mkApplTerm (mkOpTerm c $ getConstrScheme dt p ts) ars
in map (mapNamed (mkForall (map GenTypeVarDecl iargs
++ map GenVarDecl (concat vars)))) $ makeSelEqs dt ct selvars
mkSelArgs :: [[VarDecl]] -> [Term]
mkSelArgs = map (\ vs -> mkTupleTerm (map QualVar vs) nullRange)
getConstrScheme :: DataPat -> Partiality -> [Type] -> TypeScheme
getConstrScheme (DataPat _ args _ rt) p ts =
TypeScheme args (getFunType rt p ts) nullRange
getSelScheme :: DataPat -> Partiality -> Type -> TypeScheme
getSelScheme (DataPat _ args _ rt) p t =
TypeScheme args (getSelType rt p t) nullRange
-- | remove variances from generalized type arguments
toDataPat :: DataEntry -> DataPat
toDataPat (DataEntry im i _ args rk _) = let j = Map.findWithDefault i i im in
DataPat j (map nonVarTypeArg args) rk $ patToType j args rk
-- | create selector equations for a data type
makeDataSelEqs :: DataPat -> [AltDefn] -> [Named Sentence]
makeDataSelEqs dp = map (mapNamed Formula) . concatMap (makeAltSelEqs dp)
-- | analyse the alternatives of a data type
anaAlts :: GenKind -> [DataPat] -> DataPat -> [Alternative] -> Env
-> Result [AltDefn]
anaAlts genKind tys dt alts te =
do l <- mapM (anaAlt genKind tys dt te) alts
Result (checkUniqueness $ mapMaybe ( \ (Construct i _ _ _) -> i) l)
$ Just ()
return l
anaAlt :: GenKind -> [DataPat] -> DataPat -> Env -> Alternative
-> Result AltDefn
anaAlt _ _ _ te (Subtype ts _) =
do l <- mapM ( \ t -> anaStarTypeM t te) ts
return $ Construct Nothing (Set.toList $ Set.fromList $ map snd l)
Partial []
anaAlt genKind tys dt te (Constructor i cs p _) =
do newCs <- mapM (anaComps genKind tys dt te) cs
let sels = map snd newCs
Result (checkUniqueness . mapMaybe ( \ (Select s _ _) -> s )
$ concat sels) $ Just ()
return $ Construct (Just i) (map fst newCs) p sels
anaComps :: GenKind -> [DataPat] -> DataPat -> Env -> [Component]
-> Result (Type, [Selector])
anaComps genKind tys rt te cs =
do newCs <- mapM (anaComp genKind tys rt te) cs
return (mkProductType $ map fst newCs, map snd newCs)
isPartialSelector :: Type -> Bool
isPartialSelector ty = case ty of
TypeAppl (TypeName i _ _) _ -> i == lazyTypeId
_ -> False
anaComp :: GenKind -> [DataPat] -> DataPat -> Env -> Component
-> Result (Type, Selector)
anaComp genKind tys rt te (Selector s _ t _ _) =
do ct <- anaCompType genKind tys rt t te
let (p, nct) = case getTypeAppl ct of
(TypeName i _ _, [lt]) | i == lazyTypeId
&& isPartialSelector t -> (Partial, lt)
_ -> (Total, ct)
return (nct, Select (Just s) nct p)
anaComp genKind tys rt te (NoSelector t) =
do ct <- anaCompType genKind tys rt t te
return (ct, Select Nothing ct Partial)
anaCompType :: GenKind -> [DataPat] -> DataPat -> Type -> Env -> Result Type
anaCompType genKind tys (DataPat _ tArgs _ _) t te = do
(_, ct) <- anaStarTypeM t te
let ds = unboundTypevars True tArgs ct
unless (null ds) $ Result ds Nothing
mapM_ (checkMonomorphRecursion ct te) tys
mapM_ (rejectNegativeOccurrence genKind ct te) tys
return $ generalize tArgs ct
checkMonomorphRecursion :: Type -> Env -> DataPat -> Result ()
checkMonomorphRecursion t te (DataPat i _ _ rt) =
case filter (\ ty -> not (lesserType te ty rt || lesserType te rt ty))
$ findSubTypes (typeMap te) i t of
[] -> return ()
ty : _ -> Result [Diag Error ("illegal polymorphic recursion"
++ expected rt ty) $ getRange ty] Nothing
findSubTypes :: TypeMap -> Id -> Type -> [Type]
findSubTypes tm i t = case getTypeAppl t of
(TypeName j _ _, args) -> if relatedTypeIds tm i j then [t]
else concatMap (findSubTypes tm i) args
(topTy, args) -> concatMap (findSubTypes tm i) $ topTy : args
rejectNegativeOccurrence :: GenKind -> Type -> Env -> DataPat -> Result ()
rejectNegativeOccurrence genKind t te (DataPat i _ _ _) =
case findNegativeOccurrence te i t of
[] -> return ()
ty : _ -> Result [mkDiag (case genKind of
Free -> Error
_ -> Hint) "negative datatype occurrence of" ty] $ Just ()
findNegativeOccurrence :: Env -> Id -> Type -> [Type]
findNegativeOccurrence te i t = let tm = typeMap te in case getTypeAppl t of
(TypeName j _ _, _) | relatedTypeIds tm i j ->
[] -- positive occurrence
(topTy, [larg, rarg]) | lesserType te topTy (toFunType PFunArr) ->
findSubTypes tm i larg ++ findNegativeOccurrence te i rarg
(_, args) -> concatMap (findNegativeOccurrence te i) args
relatedTypeIds :: TypeMap -> Id -> Id -> Bool
relatedTypeIds tm i1 i2 =
not $ Set.null $ Set.intersection (allRelIds tm i1) $ allRelIds tm i2
allRelIds :: TypeMap -> Id -> Set.Set Id
allRelIds tm i = Set.union (superIds tm i) $ subIds tm i
subIds :: TypeMap -> Id -> Set.Set Id
subIds tm i = foldr ( \ j s ->
if Set.member i $ superIds tm j then
Set.insert j s else s) Set.empty $ Map.keys tm
mkPredVar :: DataPat -> VarDecl
mkPredVar (DataPat i _ _ rt) = let ps = posOfId i in
mkVarDecl (if isSimpleId i then mkId [mkSimpleId $ "p_" ++ show i]
else Id [mkSimpleId "p"] [i] ps) (predType ps rt)
mkPredAppl :: DataPat -> Term -> Term
mkPredAppl dp t = mkApplTerm (QualVar $ mkPredVar dp) [t]
mkPredToVarAppl :: DataPat -> VarDecl -> Term
mkPredToVarAppl dp = mkPredAppl dp . QualVar
mkConclusion :: DataPat -> Term
mkConclusion dp@(DataPat _ _ _ ty) =
let v = mkVarDecl (mkId [mkSimpleId "x"]) ty
in mkForall [GenVarDecl v] $ mkPredToVarAppl dp v
mkPremise :: Map.Map Type DataPat -> DataPat -> AltDefn -> [Term]
mkPremise m dp (Construct mc ts p sels) =
case mc of
Nothing -> []
Just c -> let
vars = map (map snd) $ genSelVars 1 sels
findHypo vd@(VarDecl _ ty _ _) =
fmap (flip mkPredToVarAppl vd) $ Map.lookup ty m
flatVars = concat vars
indHypos = mapMaybe findHypo flatVars
indConcl = mkPredAppl dp
$ mkApplTerm (mkOpTerm c $ getConstrScheme dp p ts)
$ mkSelArgs vars
in [mkForall (map GenVarDecl flatVars) $
if null indHypos then indConcl else
mkLogTerm implId nullRange (mkConjunct indHypos) indConcl]
mkConjunct :: [Term] -> Term
mkConjunct ts = if null ts then error "HasCASL.DataAna.mkConjunct" else
toBinJunctor andId ts nullRange
mkPremises :: Map.Map Type DataPat -> DataEntry -> [Term]
mkPremises m de@(DataEntry _ _ _ _ _ alts) =
concatMap (mkPremise m $ toDataPat de) $ Set.toList alts
joinTypeArgs :: [DataPat] -> Map.Map Id TypeArg
joinTypeArgs = foldr (\ (DataPat _ iargs _ _) m ->
foldr (\ ta -> Map.insert (getTypeVar ta) ta) m iargs) Map.empty
inductionScheme :: [DataEntry] -> Term
inductionScheme des =
let dps = map toDataPat des
m = Map.fromList $ map (\ dp@(DataPat _ _ _ ty) -> (ty, dp)) dps
in mkForall (map GenTypeVarDecl (Map.elems $ joinTypeArgs dps)
++ map (GenVarDecl . mkPredVar) dps)
$ mkLogTerm implId nullRange
(mkConjunct $ concatMap (mkPremises m) des)
$ mkConjunct $ map mkConclusion dps