Cross Reference: /hets/HasCASL/Constrain.hs
Constrain.hs revision c2dead95fafd7ca36d06ddf07606a1292ead6d8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
constraint resolution
-}
module HasCASL.Constrain where
import HasCASL.Unify
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.Le
import HasCASL.TypeAna
import HasCASL.ClassAna
import qualified Common.Lib.Set as Set
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Rel as Rel
import Common.Lib.State
import Common.PrettyPrint
import Common.Lib.Pretty
import Common.Keywords
import Common.Id
import Common.Result
import Data.List
import Data.Maybe
data Constrain = Kinding Type Kind
| Subtyping Type Type
deriving (Eq, Ord, Show)
instance PrettyPrint Constrain where
printText0 ga c = case c of
Kinding ty k -> printText0 ga ty <+> colon
<+> printText0 ga k
Subtyping t1 t2 -> printText0 ga t1 <+> text lessS
<+> printText0 ga t2
instance PosItem Constrain where
getRange c = case c of
Kinding ty _ -> getRange ty
Subtyping t1 t2 -> getRange t1 `appRange` getRange t2
type Constraints = Set.Set Constrain
noC :: Constraints
noC = Set.empty
joinC :: Constraints -> Constraints -> Constraints
joinC = Set.union
insertC :: Constrain -> Constraints -> Constraints
insertC c = case c of
Subtyping t1 t2 -> if t1 == t2 then id else Set.insert c
Kinding _ k -> if k == star then id else Set.insert c
substC :: Subst -> Constraints -> Constraints
substC s = Set.fold (insertC . ( \ c -> case c of
Kinding ty k -> Kinding (subst s ty) k
Subtyping t1 t2 -> Subtyping (subst s t1) $ subst s t2)) noC
simplify :: TypeEnv -> Constraints -> ([Diagnosis], Constraints)
simplify te rs =
if Set.null rs then ([], noC)
else let (r, rt) = Set.deleteFindMin rs
Result ds m = entail te r
(es, cs) = simplify te rt
in (ds ++ es, case m of
Just _ -> cs
Nothing -> insertC r cs)
entail :: Monad m => TypeEnv -> Constrain -> m ()
entail te p =
do is <- byInst te p
mapM_ (entail te) $ Set.toList is
byInst :: Monad m => TypeEnv -> Constrain -> m Constraints
byInst te c = let cm = classMap te in case c of
Kinding ty k -> case ty of
ExpandedType _ t -> byInst te $ Kinding t k
_ -> if k == star then return noC else case k of
ExtKind ek _ _ -> byInst te (Kinding ty ek)
ClassKind _ -> let (topTy, args) = getTypeAppl ty in
case topTy of
TypeName i _ _ -> let Result _ mk = getIdKind te i in
case mk of
Nothing -> fail $ "remaining variable '"
++ showPretty i "'"
Just ((_, ks), _) -> do
if null args then
if any ( \ j -> lesserKind cm j k) ks
then return noC
else fail $ "constrain '" ++
showPretty c "' is unprovable"
++ "\n known kinds are: " ++
showPretty ks ""
else do
let kas = concatMap ( \ j ->
getKindAppl cm j args) ks
newKs <- dom cm k kas
return $ Set.fromList $ zipWith Kinding args newKs
_ -> error "byInst: unexpected Type"
_ -> error "byInst: unexpected Kind"
Subtyping t1 t2 -> if lesserType te t1 t2 then return noC
else fail ("unable to prove: " ++ showPretty t1 " < "
++ showPretty t2 "")
maxKind :: ClassMap -> Kind -> Kind -> Maybe Kind
maxKind cm k1 k2 = if lesserKind cm k1 k2 then Just k1 else
if lesserKind cm k2 k1 then Just k2 else Nothing
maxKinds :: ClassMap -> [Kind] -> Maybe Kind
maxKinds cm l = case l of
[] -> Nothing
[k] -> Just k
[k1, k2] -> maxKind cm k1 k2
k1 : k2 : ks -> case maxKind cm k1 k2 of
Just k -> maxKinds cm (k : ks)
Nothing -> do k <- maxKinds cm (k2 : ks)
maxKind cm k1 k
maxKindss :: ClassMap -> [[Kind]] -> Maybe [Kind]
maxKindss cm l = let margs = map (maxKinds cm) $ transpose l in
if all isJust margs then Just $ map fromJust margs
else Nothing
dom :: Monad m => ClassMap -> Kind -> [([Kind], Kind)] -> m [Kind]
dom cm k ks =
let fks = filter ( \ (_, rk) -> lesserKind cm rk k ) ks
margs = maxKindss cm $ map fst fks
in if null fks then fail ("class not found " ++ showPretty k "")
else case margs of
Nothing -> fail "dom: maxKind"
Just args -> if any ((args ==) . fst) fks then return args
else fail "dom: not coregular"
freshTypeVarT :: Type -> State Int Type
freshTypeVarT t =
do (var, c) <- freshVar $ posOfType t
return $ TypeName var (rawKindOfType t) c
freshVarsT :: [Type] -> State Int [Type]
freshVarsT l = mapM freshTypeVarT l
toPairState :: State Int a -> State (Int, b) a
toPairState p =
do (a, b) <- get
let (r, c) = runState p a
put (c, b)
return r
addSubst :: Subst -> State (Int, Subst) ()
addSubst s = do
(c, o) <- get
put (c, compSubst o s)
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)
substPairList :: Subst -> [(Type, Type)] -> [(Type, Type)]
substPairList s = map ( \ (a, b) -> (subst s a, subst s b))
-- pre: shapeMatch succeeds
shapeMgu :: TypeEnv -> [(Type, Type)] -> State (Int, Subst) [(Type, Type)]
shapeMgu te cs =
let (atoms, structs) = partition ( \ p -> case p of
(TypeName _ _ _, TypeName _ _ _) -> True
_ -> False) cs
in if null structs then return atoms else
let p@(t1, t2) = head structs
tl = tail structs
rest = tl ++ atoms
in case p of
(ExpandedType _ t, _) -> shapeMgu te $ (t, t2) : rest
(_, ExpandedType _ t) -> shapeMgu te $ (t1, t) : rest
(LazyType t _, _) -> shapeMgu te $ (t, t2) : rest
(_, LazyType t _) -> shapeMgu te $ (t1, t) : rest
(KindedType t _ _, _) -> shapeMgu te $ (t, t2) : rest
(_, KindedType t _ _) -> shapeMgu te $ (t1, t) : rest
(ProductType _ _, _) -> shapeMgu te $ (convertType t1, t2) : rest
(_, ProductType _ _) -> shapeMgu te $ (t1, convertType t2) : rest
(FunType _ _ _ _, _) -> shapeMgu te $ (convertType t1, t2) : rest
(_, FunType _ _ _ _) -> shapeMgu te $ (t1, convertType t2) : rest
(TypeName _ _ v1, TypeAppl f a) -> if (v1 > 0) then do
vf <- toPairState $ freshTypeVarT f
va <- toPairState $ freshTypeVarT a
let s = Map.singleton v1 (TypeAppl vf va)
addSubst s
shapeMgu te $ (vf, f) : (case rawKindOfType vf of
FunKind (ExtKind _ CoVar _) _ _ -> [(va, a)]
FunKind (ExtKind _ ContraVar _) _ _ -> [(a, va)]
_ -> [(a, va), (va, a)]) ++ substPairList s rest
else error ("shapeMgu1: " ++ showPretty t1 " < " ++ showPretty t2 "")
(_, TypeName _ _ _) -> do ats <- shapeMgu te ((t2, t1) : map swap rest)
return $ map swap ats
(TypeAppl f1 a1, TypeAppl f2 a2) ->
shapeMgu te $ (f1, f2) : case (rawKindOfType f1, rawKindOfType f2) of
(FunKind (ExtKind _ CoVar _) _ _,
FunKind (ExtKind _ CoVar _) _ _) -> (a1, a2) : rest
(FunKind (ExtKind _ ContraVar _) _ _,
FunKind (ExtKind _ ContraVar _) _ _) -> (a2, a1) : rest
_ -> (a1, a2) : (a2, a1) : rest
_ -> error ("shapeMgu2: " ++ showPretty t1 " < " ++ showPretty t2 "")
zipC :: Kind -> (Type, Type) -> [(Type, Type)]
zipC k p = let q = swap p in case k of
ExtKind _ CoVar _ -> [p]
ExtKind _ ContraVar _ -> [q]
_ -> [p,q]
shapeUnify :: TypeEnv -> [(Type, Type)] -> State Int (Subst, [(Type, Type)])
shapeUnify te l = do
c <- get
let (r, (n, s)) = runState (shapeMgu te l) (c, eps)
put n
return (s, r)
getRawKindAppl :: Kind -> [a] -> (Kind, [Kind])
getRawKindAppl k args = if null args then (k, []) else
case k of
FunKind k1 k2 _ -> let (rk, ks) = getRawKindAppl k2 (tail args)
in (rk, k1 : ks)
ExtKind ek _ _ -> getRawKindAppl ek args
_ -> error ("getRawKindAppl " ++ show k)
-- input an atomized constraint list
collapser :: Rel.Rel Type -> Result Subst
collapser r =
let t = Rel.sccOfClosure r
ks = map (Set.partition ( \ e -> case e of
TypeName _ _ n -> n==0
_ -> error "collapser")) t
ws = filter (\ p -> Set.size (fst p) > 1) ks
in if null ws then
return $ foldr ( \ (cs, vs) s ->
if Set.null cs then
extendSubst s $ Set.deleteFindMin vs
else extendSubst s (Set.findMin cs, vs)) eps ks
else Result
(map ( \ (cs, _) ->
let (c1, rs) = Set.deleteFindMin cs
c2 = Set.findMin rs
in Diag Hint ("contradicting type inclusions for '"
++ showPretty c1 "' and '"
++ showPretty c2 "'") nullRange) ws) Nothing
extendSubst :: Subst -> (Type, Set.Set Type) -> Subst
extendSubst s (t, vs) = Set.fold ( \ (TypeName _ _ n) ->
Map.insert n t) s vs
-- | partition into qualification and subtyping constraints
partitionC :: Constraints -> (Constraints, Constraints)
partitionC = Set.partition ( \ c -> case c of
Kinding _ _ -> True
Subtyping _ _ -> False)
-- | convert subtypings constrains to a pair list
toListC :: Constraints -> [(Type, Type)]
toListC l = [ (t1, t2) | Subtyping t1 t2 <- Set.toList l ]
shapeMatchPairList :: TypeMap -> [(Type, Type)] -> Result Subst
shapeMatchPairList tm l = case l of
[] -> return eps
(t1, t2) : rt -> do
s1 <- shapeMatch tm t1 t2
s2 <- shapeMatchPairList tm $ substPairList s1 rt
return $ compSubst s1 s2
shapeRel :: TypeEnv -> Constraints
-> State Int (Result (Subst, Constraints, Rel.Rel Type))
shapeRel te cs =
let (qs, subS) = partitionC cs
subL = toListC subS
in case shapeMatchPairList (typeMap te) subL of
Result ds Nothing -> return $ Result ds Nothing
_ -> do (s1, atoms) <- shapeUnify te subL
let r = Rel.transClosure $ Rel.fromList atoms
es = Map.foldWithKey ( \ t1 st l1 ->
case t1 of
TypeName _ _ 0 -> Set.fold ( \ t2 l2 ->
case t2 of
TypeName _ _ 0 -> if lesserType te t1 t2
then l2 else (t1, t2) : l2
_ -> l2) l1 st
_ -> l1) [] $ Rel.toMap r
return $ if null es then
case collapser r of
Result ds Nothing -> Result ds Nothing
Result _ (Just s2) ->
let s = compSubst s1 s2
in return (s, substC s qs,
Rel.fromList $ substPairList s2 atoms)
else Result (map ( \ (t1, t2) ->
mkDiag Hint "rejected" $
Subtyping t1 t2) es) Nothing
-- | compute monotonicity of a type variable
monotonic :: TypeEnv -> Int -> Type -> (Bool, Bool)
monotonic te v t =
case t of
TypeName _ _ i -> (True, i /= v)
ExpandedType _ t2 -> monotonic te v t2
KindedType tk _ _ -> monotonic te v tk
LazyType tl _ -> monotonic te v tl
_ -> let (top, args) = getTypeAppl t in case top of
TypeName _ k _ ->
let ks = snd $ getRawKindAppl k args
(bs1, bs2) = unzip $ zipWith ( \ rk a ->
let (b1, b2) = monotonic te v a
in case rk of
ExtKind _ CoVar _ -> (b1, b2)
ExtKind _ ContraVar _ -> (b2, b1)
_ -> (b1 && b2, b1 && b2)) ks args
in (and bs1, and bs2)
_ -> error "monotonic"
-- | find monotonicity based instantiation
monoSubst :: TypeEnv -> Rel.Rel Type -> Type -> Subst
monoSubst te r t =
let varSet = Set.fromList . leaves (> 0)
vs = Set.toList $ Set.union (varSet t) $ Set.unions $ map varSet
$ Set.toList $ Rel.nodes r
monos = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, _) -> 1 == Set.size
(Rel.predecessors r $
TypeName n rk i)
_ -> False) vs
antis = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(_, True) -> 1 == Set.size
(Rel.succs r $
TypeName n rk i)
_ -> False) vs
resta = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, True) -> 1 < Set.size
(Rel.succs r $
TypeName n rk i)
_ -> False) vs
restb = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, True) -> 1 < Set.size
(Rel.predecessors r $
TypeName n rk i)
_ -> False) vs
in if null antis then
if null monos then
if null resta then
if null restb then eps else
let (i, (n, rk)) = head restb
tn = TypeName n rk i
s = Rel.predecessors r tn
sl = Set.delete tn $ foldl1 Set.intersection
$ map (Rel.succs r)
$ Set.toList s
in Map.singleton i $ Set.findMin $ if Set.null sl then s
else sl
else let (i, (n, rk)) = head resta
tn = TypeName n rk i
s = Rel.succs r tn
sl = Set.delete tn $ foldl1 Set.intersection
$ map (Rel.predecessors r)
$ Set.toList s
in Map.singleton i $ Set.findMin $ if Set.null sl then s
else sl
else Map.fromAscList $ map ( \ (i, (n, rk)) ->
(i, Set.findMin $ Rel.predecessors r $
TypeName n rk i)) monos
else Map.fromAscList $ map ( \ (i, (n, rk)) ->
(i, Set.findMin $ Rel.succs r $
TypeName n rk i)) antis
monoSubsts :: TypeEnv -> Rel.Rel Type -> Type -> Subst
monoSubsts te r t =
let s = monoSubst te (Rel.transReduce $ Rel.irreflex r) t in
if Map.null s then s else
compSubst s $
monoSubsts te (Rel.transClosure $ Rel.map (subst s) r)
$ subst s t
fromTypeMap :: TypeMap -> Rel.Rel Type
fromTypeMap = Map.foldWithKey (\ t ti r ->
foldr (Rel.insert (TypeName t (typeKind ti) 0)) r
[ ty | ty@(TypeName _ _ _) <-
superTypes ti ]) Rel.empty