Constrain.hs revision 72909c6c1cfe9702f5910d0a135c8b55729c7917
{- |
Module : $Header$
Description : resolve type constraints
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
constraint resolution
-}
module HasCASL.Constrain
( Constraints
, Constrain(..)
, noC
, substC
, joinC
, insertC
, shapeRel
, monoSubsts
, fromTypeVars
, fromTypeMap
, simplify
) where
import HasCASL.Unify
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.Le
import HasCASL.PrintLe()
import HasCASL.TypeAna
import HasCASL.ClassAna
import HasCASL.VarDecl
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Common.Lib.Rel as Rel
import Common.Lib.State
import Common.Id
import Common.Result
import Common.Doc
import Common.DocUtils
import Control.Exception(assert)
import Data.List
import Data.Maybe
instance Pretty Constrain where
pretty c = case c of
Kinding ty k -> pretty $ KindedType ty (Set.singleton k) nullRange
Subtyping t1 t2 -> fsep [pretty t1, less <+> pretty t2]
instance PosItem Constrain where
getRange c = case c of
Kinding ty _ -> getRange ty
Subtyping t1 t2 -> getRange t1 `appRange` getRange t2
type Constraints = Set.Set Constrain
noC :: Constraints
noC = Set.empty
joinC :: Constraints -> Constraints -> Constraints
joinC = Set.union
insertC :: Constrain -> Constraints -> Constraints
insertC c = case c of
Subtyping t1 t2 -> if t1 == t2 then id else Set.insert c
Kinding _ k -> if k == universe then id else Set.insert c
substC :: Subst -> Constraints -> Constraints
substC s = Set.fold (insertC . ( \ c -> case c of
Kinding ty k -> Kinding (subst s ty) k
Subtyping t1 t2 -> Subtyping (subst s t1) $ subst s t2)) noC
simplify :: Env -> Constraints -> ([Diagnosis], Constraints)
simplify te rs =
if Set.null rs then ([], noC)
else let (r, rt) = Set.deleteFindMin rs
Result ds m = entail te r
(es, cs) = simplify te rt
in (ds ++ es, case m of
Just _ -> cs
Nothing -> insertC r cs)
entail :: Monad m => Env -> Constrain -> m ()
entail te p =
do is <- byInst te p
mapM_ (entail te) $ Set.toList is
byInst :: Monad m => Env -> Constrain -> m Constraints
byInst te c = let cm = classMap te in case c of
Kinding ty k -> if k == universe then
assert (rawKindOfType ty == ClassKind ())
$ return noC else
let Result _ds mk = inferKinds (Just True) ty te in
case mk of
Nothing -> fail $ "constrain '" ++
showDoc c "' is unprovable"
Just ((_, ks), _) -> if newKind cm k ks then
fail $ "constrain '" ++
showDoc c "' is unprovable" ++
if Set.null ks then "" else
"\n known kinds are: " ++ showDoc ks ""
else return noC
Subtyping t1 t2 -> if lesserType te t1 t2 then return noC
else fail ("unable to prove: " ++ showDoc t1 " < "
++ showDoc t2 "")
freshTypeVarT :: Type -> State Int Type
freshTypeVarT t =
do (var, c) <- freshVar $ Id [] [] $ getRange t
return $ TypeName var (rawKindOfType t) c
toPairState :: State Int a -> State (Int, b) a
toPairState p =
do (a, b) <- get
let (r, c) = runState p a
put (c, b)
return r
addSubst :: Subst -> State (Int, Subst) ()
addSubst s = do
(c, o) <- get
put (c, compSubst o s)
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)
substPairList :: Subst -> [(Type, Type)] -> [(Type, Type)]
substPairList s = map ( \ (a, b) -> (subst s a, subst s b))
absOrExpandedAbs :: Type -> Bool
absOrExpandedAbs t = case t of
TypeAbs _ _ _ -> True
ExpandedType _ (TypeAbs _ _ _) -> True
_ -> False
-- pre: shapeMatch succeeds
shapeMgu :: Env -> [(Type, Type)] -> State (Int, Subst) [(Type, Type)]
shapeMgu te cs =
let (atoms, structs) = partition ( \ p -> case p of
(TypeName _ _ _, TypeName _ _ _) -> True
_ -> False) cs
in if null structs then return atoms else
let (t1, t2) = head structs
tl = tail structs
rest = tl ++ atoms
in case (t1, t2) of
(ExpandedType _ t, _) | noAbs t -> shapeMgu te $ (t, t2) : rest
(_, ExpandedType _ t) | noAbs t -> shapeMgu te $ (t1, t) : rest
(TypeAppl (TypeName l _ _) t, _) | l == lazyTypeId ->
shapeMgu te $ (t, t2) : rest
(_, TypeAppl (TypeName l _ _) t) | l == lazyTypeId ->
shapeMgu te $ (t1, t) : rest
(KindedType t _ _, _) -> shapeMgu te $ (t, t2) : rest
(_, KindedType t _ _) -> shapeMgu te $ (t1, t) : rest
(TypeName _ _ v1, TypeAppl f a) ->
if hasRedex t2 then shapeMgu te $ (t1, redStep t2) : rest else
if v1 > 0 then do
vf <- toPairState $ freshTypeVarT f
va <- toPairState $ freshTypeVarT a
let s = Map.singleton v1 (TypeAppl vf va)
addSubst s
shapeMgu te $ (vf, f) : (case rawKindOfType vf of
FunKind CoVar _ _ _ -> [(va, a)]
FunKind ContraVar _ _ _ -> [(a, va)]
_ -> [(a, va), (va, a)]) ++ substPairList s tl ++ atoms
else error ("shapeMgu1a: " ++ showDoc t1 " < " ++ showDoc t2 "")
(TypeName _ _ v1, _) | absOrExpandedAbs t2 -> if v1 > 0 then do
let s = Map.singleton v1 t2
addSubst s
shapeMgu te $ substPairList s tl ++ atoms
else error ("shapeMgu1b: " ++ showDoc t1 " < " ++ showDoc t2 "")
(_, TypeName _ _ _) -> do
ats <- shapeMgu te ((t2, t1) : map swap rest)
return $ map swap ats
(TypeAppl f1 a1, TypeAppl f2 a2) -> let
Result _ ms1 = if hasRedex t1 then
shapeMatch (typeMap te) (redStep t1) t2 else fail "shapeMatch1"
Result _ ms2 = if hasRedex t2 then
shapeMatch (typeMap te) t1 (redStep t2) else fail "shapeMatch2"
res = shapeMgu te $ (f1, f2) :
case (rawKindOfType f1, rawKindOfType f2) of
(FunKind CoVar _ _ _,
FunKind CoVar _ _ _) -> (a1, a2) : rest
(FunKind ContraVar _ _ _,
FunKind ContraVar _ _ _) -> (a2, a1) : rest
_ -> (a1, a2) : (a2, a1) : rest
in case ms1 of
Nothing -> case ms2 of
Nothing -> res
Just _ -> shapeMgu te $ (t1, redStep t2) : rest
Just _ -> shapeMgu te $ (redStep t1, t2) : rest
_ -> if t1 == t2 then shapeMgu te rest else
error ("shapeMgu2: " ++ showDoc t1 " < " ++ showDoc t2 "")
shapeUnify :: Env -> [(Type, Type)] -> State Int (Subst, [(Type, Type)])
shapeUnify te l = do
c <- get
let (r, (n, s)) = runState (shapeMgu te l) (c, eps)
put n
return (s, r)
-- input an atomized constraint list
collapser :: Rel.Rel Type -> Result Subst
collapser r =
let t = Rel.sccOfClosure r
ks = map (Set.partition ( \ e -> case e of
TypeName _ _ n -> n==0
_ -> error "collapser")) t
ws = filter (hasMany . fst) ks
in if null ws then
return $ foldr ( \ (cs, vs) s ->
if Set.null cs then
extendSubst s $ Set.deleteFindMin vs
else extendSubst s (Set.findMin cs, vs)) eps ks
else Result
(map ( \ (cs, _) ->
let (c1, rs) = Set.deleteFindMin cs
c2 = Set.findMin rs
in Diag Hint ("contradicting type inclusions for '"
++ showDoc c1 "' and '"
++ showDoc c2 "'") nullRange) ws) Nothing
extendSubst :: Subst -> (Type, Set.Set Type) -> Subst
extendSubst s (t, vs) = Set.fold ( \ (TypeName _ _ n) ->
Map.insert n t) s vs
-- | partition into qualification and subtyping constraints
partitionC :: Constraints -> (Constraints, Constraints)
partitionC = Set.partition ( \ c -> case c of
Kinding _ _ -> True
Subtyping _ _ -> False)
-- | convert subtypings constrains to a pair list
toListC :: Constraints -> [(Type, Type)]
toListC l = [ (t1, t2) | Subtyping t1 t2 <- Set.toList l ]
shapeMatchPairList :: TypeMap -> [(Type, Type)] -> Result Subst
shapeMatchPairList tm l = case l of
[] -> return eps
(t1, t2) : rt -> do
s1 <- shapeMatch tm t1 t2
s2 <- shapeMatchPairList tm $ substPairList s1 rt
return $ compSubst s1 s2
shapeRel :: Env -> Constraints
-> State Int (Result (Subst, Constraints, Rel.Rel Type))
shapeRel te cs =
let (qs, subS) = partitionC cs
subL = toListC subS
in case shapeMatchPairList (typeMap te) subL of
Result ds Nothing -> return $ Result ds Nothing
_ -> do (s1, atoms) <- shapeUnify te subL
let r = Rel.transClosure $ Rel.fromList atoms
es = Map.foldWithKey ( \ t1 st l1 ->
case t1 of
TypeName _ _ 0 -> Set.fold ( \ t2 l2 ->
case t2 of
TypeName _ _ 0 -> if lesserType te t1 t2
then l2 else (t1, t2) : l2
_ -> l2) l1 st
_ -> l1) [] $ Rel.toMap r
return $ if null es then
case collapser r of
Result ds Nothing -> Result ds Nothing
Result _ (Just s2) ->
let s = compSubst s1 s2
in return (s, substC s qs,
Rel.fromList $ substPairList s2 atoms)
else Result (map ( \ (t1, t2) ->
mkDiag Hint "rejected" $
Subtyping t1 t2) es) Nothing
-- | compute monotonicity of a type variable
monotonic :: Env -> Int -> Type -> (Bool, Bool)
monotonic te v t =
case t of
TypeName _ _ i -> (True, i /= v)
TypeAppl t1 t2 ->
if hasRedex t then monotonic te v $ redStep t else let
(a1, a2) = monotonic te v t2
(f1, f2) = monotonic te v t1
in case rawKindOfType t1 of
FunKind CoVar _ _ _ -> (f1 && a1, f2 && a2)
FunKind ContraVar _ _ _ -> (f1 && a2, f2 && a1)
_ -> (f1 && a1 && a2, f2 && a1 && a2)
_ -> monotonic te v (stripType "monotonic" t)
-- | find monotonicity based instantiation
monoSubst :: Env -> Rel.Rel Type -> Type -> Subst
monoSubst te r t =
let varSet = Set.fromList . leaves (> 0)
vs = Set.toList $ Set.union (varSet t) $ Set.unions $ map varSet
$ Set.toList $ Rel.nodes r
monos = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, _) -> isSingleton
(Rel.predecessors r $
TypeName n rk i)
_ -> False) vs
antis = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(_, True) -> isSingleton
(Rel.succs r $
TypeName n rk i)
_ -> False) vs
resta = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, True) -> hasMany $
Rel.succs r $ TypeName n rk i
_ -> False) vs
restb = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, True) -> hasMany $
Rel.predecessors r $ TypeName n rk i
_ -> False) vs
in if null antis then
if null monos then
if null resta then
if null restb then eps else
let (i, (n, rk)) = head restb
tn = TypeName n rk i
s = Rel.predecessors r tn
sl = Set.delete tn $ foldl1 Set.intersection
$ map (Rel.succs r)
$ Set.toList s
in Map.singleton i $ Set.findMin $ if Set.null sl then s
else sl
else let (i, (n, rk)) = head resta
tn = TypeName n rk i
s = Rel.succs r tn
sl = Set.delete tn $ foldl1 Set.intersection
$ map (Rel.predecessors r)
$ Set.toList s
in Map.singleton i $ Set.findMin $ if Set.null sl then s
else sl
else Map.fromDistinctAscList $ map ( \ (i, (n, rk)) ->
(i, Set.findMin $ Rel.predecessors r $
TypeName n rk i)) monos
else Map.fromDistinctAscList $ map ( \ (i, (n, rk)) ->
(i, Set.findMin $ Rel.succs r $
TypeName n rk i)) antis
monoSubsts :: Env -> Rel.Rel Type -> Type -> Subst
monoSubsts te r t =
let s = monoSubst te (Rel.transReduce $ Rel.irreflex r) t in
if Map.null s then s else
compSubst s $
monoSubsts te (Rel.transClosure $ Rel.map (subst s) r)
$ subst s t
-- | Downsets of type variables made monomorphic need to be considered
fromTypeVars :: LocalTypeVars -> Constraints
fromTypeVars = Map.foldWithKey
(\ t (TypeVarDefn _ vk rk _) c -> case vk of
Downset ty ->
insertC (Subtyping (TypeName t rk 0) $ monoType ty) c
_ -> c) noC
-- | the type relation of declared types
fromTypeMap :: TypeMap -> Rel.Rel Type
fromTypeMap = Map.foldWithKey (\ t ti r -> let k = typeKind ti in
Set.fold ( \ j -> Rel.insert (TypeName t k 0)
$ TypeName j k 0) r
$ superTypes ti) Rel.empty