Constrain.hs revision 14a1af9d9909dc47dc7fee6b0170b7ac0aef85da
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
constraint resolution
-}
module HasCASL.Constrain where
import HasCASL.Unify
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.Le
import HasCASL.TypeAna
import HasCASL.ClassAna
import qualified Common.Lib.Set as Set
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Rel as Rel
import Common.Lib.State
import Common.PrettyPrint
import Common.Lib.Pretty
import Common.Keywords
import Common.Id
import Common.Result
import Data.List
import Data.Maybe
data Constrain = Kinding Type Kind
| Subtyping Type Type
deriving (Eq, Ord, Show)
instance PrettyPrint Constrain where
printText0 ga c = case c of
Kinding ty k -> printText0 ga ty <+> colon
<+> printText0 ga k
Subtyping t1 t2 -> printText0 ga t1 <+> text lessS
<+> printText0 ga t2
instance PosItem Constrain where
get_pos c = case c of
Kinding ty _ -> get_pos ty
Subtyping t1 t2 -> get_pos t1 ++ get_pos t2
type Constraints = Set.Set Constrain
noC :: Constraints
noC = Set.empty
joinC :: Constraints -> Constraints -> Constraints
joinC = Set.union
insertC :: Constrain -> Constraints -> Constraints
insertC c = case c of
Subtyping t1 t2 -> if t1 == t2 then id else Set.insert c
_ -> Set.insert c
substC :: Subst -> Constraints -> Constraints
substC s = Set.fold (insertC . ( \ c -> case c of
Kinding ty k -> Kinding (subst s ty) k
Subtyping t1 t2 -> Subtyping (subst s t1) $ subst s t2)) noC
simplify :: TypeEnv -> Constraints -> ([Diagnosis], Constraints)
simplify te rs =
if Set.null rs then ([], noC)
else let (r, rt) = Set.deleteFindMin rs
Result ds m = entail te r
(es, cs) = simplify te rt
in (ds ++ es, case m of
Just _ -> cs
Nothing -> insertC r cs)
entail :: Monad m => TypeEnv -> Constrain -> m ()
entail te p =
do is <- byInst te p
mapM_ (entail te) $ Set.toList is
byInst :: Monad m => TypeEnv -> Constrain -> m Constraints
byInst te c = let cm = classMap te in case c of
Kinding ty k -> case ty of
ExpandedType _ t -> byInst te $ Kinding t k
_ -> case k of
ExtKind ek _ _ -> byInst te (Kinding ty ek)
ClassKind _ -> let (topTy, args) = getTypeAppl ty in
case topTy of
TypeName _ kind _ -> if null args then
if lesserKind cm kind k then return noC
else fail $ expected k kind
else do
let ks = getKindAppl cm kind args
newKs <- dom cm k ks
return $ Set.fromList $ zipWith Kinding args newKs
_ -> error "byInst: unexpected Type"
_ -> error "byInst: unexpected Kind"
Subtyping t1 t2 -> if lesserType te t1 t2 then return noC
else fail ("unable to prove: " ++ showPretty t1 " < "
++ showPretty t2 "")
maxKind :: ClassMap -> Kind -> Kind -> Maybe Kind
maxKind cm k1 k2 = if lesserKind cm k1 k2 then Just k1 else
if lesserKind cm k2 k1 then Just k2 else Nothing
maxKinds :: ClassMap -> [Kind] -> Maybe Kind
maxKinds cm l = case l of
[] -> Nothing
[k] -> Just k
[k1, k2] -> maxKind cm k1 k2
k1 : k2 : ks -> case maxKind cm k1 k2 of
Just k -> maxKinds cm (k : ks)
Nothing -> do k <- maxKinds cm (k2 : ks)
maxKind cm k1 k
maxKindss :: ClassMap -> [[Kind]] -> Maybe [Kind]
maxKindss cm l = let margs = map (maxKinds cm) $ transpose l in
if all isJust margs then Just $ map fromJust margs
else Nothing
dom :: Monad m => ClassMap -> Kind -> [(Kind, [Kind])] -> m [Kind]
dom cm k ks =
let fks = filter ( \ (rk, _) -> lesserKind cm rk k ) ks
margs = maxKindss cm $ map snd fks
in if null fks then fail ("class not found " ++ showPretty k "")
else case margs of
Nothing -> fail "dom: maxKind"
Just args -> if any ((args ==) . snd) fks then return args
else fail "dom: not coregular"
freshTypeVarT :: Type -> State Int Type
freshTypeVarT t =
do (var, c) <- freshVar $ posOfType t
return $ TypeName var (rawKindOfType t) c
freshVarsT :: [Type] -> State Int [Type]
freshVarsT l = mapM freshTypeVarT l
toPairState :: State Int a -> State (Int, b) a
toPairState p =
do (a, b) <- get
let (r, c) = runState p a
put (c, b)
return r
addSubst :: Subst -> State (Int, Subst) ()
addSubst s = do
(c, o) <- get
put (c, compSubst o s)
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)
-- pre: shapeMatch succeeds
shapeMgu :: TypeEnv -> [(Type, Type)] -> State (Int, Subst) [(Type, Type)]
shapeMgu te cs =
let (atoms, structs) = partition ( \ p -> case p of
(TypeName _ _ _, TypeName _ _ _) -> True
_ -> False) cs
in if null structs then return atoms else
let p@(t1, t2) = head structs
tl = tail structs
rest = tl ++ atoms
in case p of
(ExpandedType _ t, _) -> shapeMgu te ((t, t2) : rest)
(_, ExpandedType _ t) -> shapeMgu te ((t1, t) : rest)
(LazyType t _, _) -> shapeMgu te ((t, t2) : rest)
(_, LazyType t _) -> shapeMgu te ((t1, t) : rest)
(KindedType t _ _, _) -> shapeMgu te ((t, t2) : rest)
(_, KindedType t _ _) -> shapeMgu te ((t1, t) : rest)
(TypeName _ _ v1, _) -> if (v1 > 0) then case t2 of
ProductType ts ps -> do
nts <- toPairState $ freshVarsT ts
let s = Map.singleton v1 $ ProductType nts ps
addSubst s
shapeMgu te (zip nts ts ++ subst s rest)
FunType t3 ar t4 ps -> do
v3 <- toPairState $ freshTypeVarT t3
v4 <- toPairState $ freshTypeVarT t4
let s = Map.singleton v1 $ FunType v3 ar v4 ps
addSubst s
shapeMgu te ((t3, v3) : (v4, t4) : subst s rest)
_ -> do
let (topTy, args) = getTypeAppl t2
(_, ks) = getRawKindAppl (rawKindOfType topTy) args
vs <- toPairState $ freshVarsT args
let s = Map.singleton v1 $ mkTypeAppl topTy vs
addSubst s
shapeMgu te (concat (zipWith zipC ks $ zip vs args)
++ subst s rest)
else error ("shapeMgu: " ++ showPretty t1 " < " ++ showPretty t2 "")
(_, TypeName _ _ _) -> do ats <- shapeMgu te ((t2, t1) : map swap rest)
return $ map swap ats
(ProductType s1 _, ProductType s2 _) -> shapeMgu te (zip s1 s2 ++ rest)
(FunType t3 a1 t4 _, FunType t5 a2 t6 _) ->
let arr a = TypeName (arrowId a) funKind 0 in
shapeMgu te ((arr a1, arr a2) : (t5, t3) : (t4, t6) : rest)
_ -> let (top1, as1) = getTypeAppl t1
(top2, as2) = getTypeAppl t2
in case (top1, top2) of
(TypeName _ r1 _, TypeName _ r2 _) ->
let (_, ks) = getRawKindAppl r1 as1
in if (r1 == r2 && length as1 == length as2) then
shapeMgu te ((top1, top2) :
concat (zipWith zipC ks $ zip as1 as2)
++ rest)
else error "shapeMgu"
_ -> error ("shapeMgu: " ++ showPretty t1 " < " ++ showPretty t2 "")
zipC :: Kind -> (Type, Type) -> [(Type, Type)]
zipC k p = let q = swap p in case k of
ExtKind _ CoVar _ -> [p]
ExtKind _ ContraVar _ -> [q]
_ -> [p,q]
shapeUnify :: TypeEnv -> [(Type, Type)] -> State Int (Subst, [(Type, Type)])
shapeUnify te l = do
c <- get
let (r, (n, s)) = runState (shapeMgu te l) (c, eps)
put n
return (s, r)
getRawKindAppl :: Kind -> [a] -> (Kind, [Kind])
getRawKindAppl k args = if null args then (k, []) else
case k of
FunKind k1 k2 _ -> let (rk, ks) = getRawKindAppl k2 (tail args)
in (rk, k1 : ks)
ExtKind ek _ _ -> getRawKindAppl ek args
_ -> error ("getRawKindAppl " ++ show k)
-- input an atomized constraint list
collapser :: Rel.Rel Type -> Result Subst
collapser r =
let t = Rel.sccOfClosure r
ks = map (Set.partition ( \ e -> case e of
TypeName _ _ n -> n==0
_ -> error "collapser")) t
ws = filter (\ p -> Set.size (fst p) > 1) ks
in if null ws then
return $ foldr ( \ (cs, vs) s ->
if Set.null cs then
extendSubst s $ Set.deleteFindMin vs
else extendSubst s (Set.findMin cs, vs)) eps ks
else Result
(map ( \ (cs, _) ->
let (c1, rs) = Set.deleteFindMin cs
c2 = Set.findMin rs
in Diag Hint ("contradicting type inclusions for '"
++ showPretty c1 "' and '"
++ showPretty c2 "'") []) ws) Nothing
extendSubst :: Subst -> (Type, Set.Set Type) -> Subst
extendSubst s (t, vs) = Set.fold ( \ (TypeName _ _ n) ->
Map.insert n t) s vs
-- | partition into qualification and subtyping constraints
partitionC :: Constraints -> (Constraints, Constraints)
partitionC = Set.partition ( \ c -> case c of
Kinding _ _ -> True
Subtyping _ _ -> False)
-- | convert subtypings constrains to a pair list
toListC :: Constraints -> [(Type, Type)]
toListC l = [ (t1, t2) | Subtyping t1 t2 <- Set.toList l ]
shapeRel :: TypeEnv -> Constraints
-> State Int (Result (Subst, Constraints, Rel.Rel Type))
shapeRel te cs =
let (qs, subS) = partitionC cs
subL = toListC subS
in case shapeMatch (typeMap te) (map fst subL) $ map snd subL of
Result ds Nothing -> return $ Result ds Nothing
_ -> do (s1, atoms) <- shapeUnify te subL
let r = Rel.transClosure $ Rel.fromList atoms
es = Map.foldWithKey ( \ t1 st l1 ->
case t1 of
TypeName _ _ 0 -> Set.fold ( \ t2 l2 ->
case t2 of
TypeName _ _ 0 -> if lesserType te t1 t2
then l2 else (t1, t2) : l2
_ -> l2) l1 st
_ -> l1) [] $ Rel.toMap r
return $ if null es then
case collapser r of
Result ds Nothing -> Result ds Nothing
Result _ (Just s2) ->
let s = compSubst s1 s2
in return (s, substC s qs,
Rel.fromList $ subst s2 atoms)
else Result (map ( \ (t1, t2) ->
mkDiag Hint "rejected" $
Subtyping t1 t2) es) Nothing
-- | compute monotonicity of a type variable
monotonic :: TypeEnv -> Int -> Type -> (Bool, Bool)
monotonic te v t =
case t of
TypeName _ _ i -> (True, i /= v)
ExpandedType _ t2 -> monotonic te v t2
KindedType tk _ _ -> monotonic te v tk
LazyType tl _ -> monotonic te v tl
_ -> let (top, args) = getTypeAppl t in case top of
TypeName _ k _ ->
let ks = snd $ getRawKindAppl k args
(bs1, bs2) = unzip $ zipWith ( \ rk a ->
let (b1, b2) = monotonic te v a
in case rk of
ExtKind _ CoVar _ -> (b1, b2)
ExtKind _ ContraVar _ -> (b2, b1)
_ -> (b1 && b2, b1 && b2)) ks args
in (and bs1, and bs2)
_ -> error "monotonic"
-- | find monotonicity based instantiation
monoSubst :: TypeEnv -> Rel.Rel Type -> Type -> Subst
monoSubst te r t =
let varSet = Set.fromList . leaves (> 0)
$ Set.toList $ Rel.nodes r
monos = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, _) -> 1 == Set.size
(Rel.predecessors r $
TypeName n rk i)
_ -> False) vs
antis = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(_, True) -> 1 == Set.size
(Rel.succs r $
TypeName n rk i)
_ -> False) vs
resta = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, True) -> 1 < Set.size
(Rel.succs r $
TypeName n rk i)
_ -> False) vs
restb = filter ( \ (i, (n, rk)) -> case monotonic te i t of
(True, True) -> 1 < Set.size
(Rel.predecessors r $
TypeName n rk i)
_ -> False) vs
in if null antis then
if null monos then
if null resta then
if null restb then eps else
let (i, (n, rk)) = head restb
tn = TypeName n rk i
s = Rel.predecessors r tn
sl = Set.delete tn $ foldl1 Set.intersection
$ map (Rel.succs r)
$ Set.toList s
else sl
else let (i, (n, rk)) = head resta
tn = TypeName n rk i
s = Rel.succs r tn
sl = Set.delete tn $ foldl1 Set.intersection
$ map (Rel.predecessors r)
$ Set.toList s
else sl
else Map.fromAscList $ map ( \ (i, (n, rk)) ->
(i, Set.findMin $ Rel.predecessors r $
TypeName n rk i)) monos
else Map.fromAscList $ map ( \ (i, (n, rk)) ->
(i, Set.findMin $ Rel.succs r $
TypeName n rk i)) antis
monoSubsts :: TypeEnv -> Rel.Rel Type -> Type -> Subst
monoSubsts te r t =
let s = monoSubst te (Rel.transReduce $ Rel.irreflex r) t in
if Map.null s then s else
compSubst s $
monoSubsts te (Rel.transClosure $ Rel.map (subst s) r)
$ subst s t
fromTypeMap :: TypeMap -> Rel.Rel Type
fromTypeMap = Map.foldWithKey (\ t ti r ->
foldr (Rel.insert (TypeName t (typeKind ti) 0)) r
[ ty | ty@(TypeName _ _ _) <-
superTypes ti ]) Rel.empty