Builtin.hs revision 7fa5992596c7e3cdb6c654ad0856fd0c6030f309
{- |
Module : $Header$
Description : builtin types and functions
Copyright : (c) Christian Maeder and Uni Bremen 2003
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
HasCASL's builtin types and functions
-}
module HasCASL.Builtin
( cpoMap
, bList
, bTypes
, bOps
, preEnv
, addBuiltins
, aTypeArg
, bTypeArg
, cTypeArg
, aType
, bType
, cType
, botId
, whenElse
, ifThenElse
, defId
, eqId
, falseId
, trueId
, notId
, negId
, andId
, orId
, implId
, infixIf
, eqvId
, resId
, resType
, botType
, whenType
, defType
, eqType
, notType
, logType
, mkQualOp
, mkEqTerm
, mkLogTerm
, toBinJunctor
, mkTerm
, unitTerm
, unitTypeScheme
) where
import Common.Id
import Common.Keywords
import Common.GlobalAnnotations
import Common.AS_Annotation
import Common.AnnoParser
import Common.AnalyseAnnos
import Common.Result
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.Rel as Rel
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.Le
-- * buitln identifiers
trueId :: Id
trueId = mkId [mkSimpleId trueS]
falseId :: Id
falseId = mkId [mkSimpleId falseS]
ifThenElse :: Id
ifThenElse = mkId (map mkSimpleId [ifS, place, thenS, place, elseS, place])
whenElse :: Id
whenElse = mkId (map mkSimpleId [place, whenS, place, elseS, place])
infixIf :: Id
infixIf = mkInfix ifS
andId :: Id
andId = mkInfix lAnd
orId :: Id
orId = mkInfix lOr
implId :: Id
implId = mkInfix implS
eqvId :: Id
eqvId = mkInfix equivS
resId :: Id
resId = mkInfix "res"
{-
make these prefix identifier to allow "not def x" to be recognized
as "not (def x)" by giving def__ higher precedence then not__.
Simple identifiers usually have higher precedence then ____,
otherwise "def x" would be rejected. But with simple identifiers
"not def x" would be parsed as "(not def) x" because ____ is left
associative.
-}
defId :: Id
defId = mkId [mkSimpleId defS, placeTok]
notId :: Id
notId = mkId [mkSimpleId notS, placeTok]
negId :: Id
negId = mkId [mkSimpleId negS, placeTok]
builtinRelIds :: Set.Set Id
builtinRelIds = Set.fromList [typeId, eqId, exEq, defId]
builtinLogIds :: Set.Set Id
builtinLogIds = Set.fromList [andId, eqvId, implId, orId, infixIf, notId]
-- | add builtin identifiers
addBuiltins :: GlobalAnnos -> GlobalAnnos
addBuiltins ga =
let ass = assoc_annos ga
newAss = Map.union ass $ Map.fromList
[(applId, ALeft), (andId, ALeft), (orId, ALeft),
(implId, ARight), (infixIf, ALeft),
(whenElse, ARight)]
precs = prec_annos ga
pMap = Rel.toMap precs
opIs = Set.toList
((((Set.filter (\ i -> begPlace i || endPlace i) opIds)
Set.\\ builtinRelIds) Set.\\ builtinLogIds)
Set.\\ Set.fromList [applId, whenElse])
logs = [(eqvId, implId), (implId, andId), (implId, orId),
(eqvId, infixIf), (infixIf, andId), (infixIf, orId),
(andId, notId), (orId, notId),
(andId, negId), (orId, negId)]
rels1 = map ( \ i -> (notId, i)) $ Set.toList builtinRelIds
rels1b = map ( \ i -> (negId, i)) $ Set.toList builtinRelIds
rels2 = map ( \ i -> (i, whenElse)) $ Set.toList builtinRelIds
ops1 = map ( \ i -> (whenElse, i)) (applId : opIs)
ops2 = map ( \ i -> (i, applId)) opIs
newPrecs = foldl (\ p (a, b) -> if Rel.path b a p then p else
Rel.insert a b p) precs $
concat [logs, rels1, rels1b, rels2, ops1, ops2]
in case addGlobalAnnos ga { assoc_annos = newAss
, prec_annos = Rel.transClosure newPrecs } $
map parseDAnno displayStrings of
Result _ (Just newGa) -> newGa
_ -> error "addBuiltins"
displayStrings :: [String]
displayStrings =
[ "%display __\\/__ %LATEX __\\vee__"
, "%display __/\\__ %LATEX __\\wedge__"
, "%display __=>__ %LATEX __\\Rightarrow__"
, "%display __<=>__ %LATEX __\\Leftrightarrow__"
, "%display not__ %LATEX \\neg__"
]
parseDAnno :: String -> Annotation
parseDAnno str = case parse annotationL "" str of
Left _ -> error "parseDAnno"
Right a -> a
aVar :: Id
aVar = stringToId "a"
bVar :: Id
bVar = stringToId "b"
cVar :: Id
cVar = stringToId "c"
aType :: Type
aType = typeArgToType aTypeArg
bType :: Type
bType = typeArgToType bTypeArg
cType :: Type
cType = typeArgToType cTypeArg
lazyAType :: Type
lazyAType = mkLazyType aType
varToTypeArgK :: Id -> Int -> Variance -> Kind -> TypeArg
varToTypeArgK i n v k = TypeArg i v (VarKind k) (toRaw k) n Other nullRange
varToTypeArg :: Id -> Int -> Variance -> TypeArg
varToTypeArg i n v = varToTypeArgK i n v universe
mkATypeArg :: Variance -> TypeArg
mkATypeArg = varToTypeArg aVar (-1)
aTypeArg :: TypeArg
aTypeArg = mkATypeArg NonVar
aTypeArgK :: Kind -> TypeArg
aTypeArgK k = varToTypeArgK aVar (-1) NonVar k
bTypeArg :: TypeArg
bTypeArg = varToTypeArg bVar (-2) NonVar
cTypeArg :: TypeArg
cTypeArg = varToTypeArg cVar (-3) NonVar
bindVarA :: TypeArg -> Type -> TypeScheme
bindVarA a t = TypeScheme [a] t nullRange
bindA :: Type -> TypeScheme
bindA = bindVarA aTypeArg
resType :: TypeScheme
resType = TypeScheme [aTypeArg, bTypeArg]
(mkFunArrType (mkProductType [lazyAType, mkLazyType bType]) FunArr aType)
nullRange
lazyLog :: Type
lazyLog = mkLazyType unitType
aPredType :: Type
aPredType = TypeAbs (mkATypeArg ContraVar)
(mkFunArrType aType PFunArr unitType) nullRange
eqType :: TypeScheme
eqType = bindA $ mkFunArrType (mkProductType [lazyAType, lazyAType])
PFunArr unitType
logType :: TypeScheme
logType = simpleTypeScheme $ mkFunArrType
(mkProductType [lazyLog, lazyLog]) PFunArr unitType
notType :: TypeScheme
notType = simpleTypeScheme $ mkFunArrType lazyLog PFunArr unitType
whenType :: TypeScheme
whenType = bindA $ mkFunArrType
(mkProductType [lazyAType, lazyLog, lazyAType]) PFunArr aType
unitTypeScheme :: TypeScheme
unitTypeScheme = simpleTypeScheme lazyLog
botId :: Id
botId = mkId [mkSimpleId "bottom"]
predTypeId :: Id
predTypeId = mkId [mkSimpleId "Pred"]
logId :: Id
logId = mkId [mkSimpleId "Logical"]
botType :: TypeScheme
botType = let a = aTypeArgK cppoCl in bindVarA a $ mkLazyType $ typeArgToType a
defType :: TypeScheme
defType = bindA $ mkFunArrType lazyAType PFunArr unitType
-- | builtin functions
bList :: [(Id, TypeScheme)]
bList = (botId, botType) : (defId, defType) : (notId, notType) :
(negId, notType) : (whenElse, whenType) :
(trueId, unitTypeScheme) : (falseId, unitTypeScheme) :
(eqId, eqType) : (exEq, eqType) : (resId, resType) :
map ( \ o -> (o, logType)) [andId, orId, eqvId, implId, infixIf]
mkTypesEntry :: Id -> Kind -> [Kind] -> [Id] -> TypeDefn -> (Id, TypeInfo)
mkTypesEntry i k cs s d =
(i, TypeInfo (toRaw k) (Set.fromList cs) (Set.fromList s) d)
funEntry :: Arrow -> [Arrow] -> [Kind] -> (Id, TypeInfo)
funEntry a s cs =
mkTypesEntry (arrowId a) funKind (funKind : cs) (map arrowId s) NoTypeDefn
mkEntry :: Id -> Kind -> [Kind] -> TypeDefn -> (Id, TypeInfo)
mkEntry i k cs = mkTypesEntry i k cs []
pEntry :: Id -> Kind -> TypeDefn -> (Id, TypeInfo)
pEntry i k d = mkEntry i k [k] d
-- | builtin data type map
bTypes :: TypeMap
bTypes = Map.fromList $ funEntry PFunArr [] []
: funEntry FunArr [PFunArr] []
: funEntry PContFunArr [PFunArr] [funKind3 cpoCl cpoCl cppoCl]
: funEntry ContFunArr [PContFunArr, FunArr]
[funKind3 cpoCl cpoCl cpoCl, funKind3 cpoCl cppoCl cppoCl]
: pEntry unitTypeId cppoCl NoTypeDefn
: pEntry predTypeId (FunKind ContraVar universe universe nullRange)
(AliasTypeDefn aPredType)
: pEntry lazyTypeId coKind NoTypeDefn
: pEntry logId universe (AliasTypeDefn $ mkLazyType unitType)
: map (\ n -> let k = prodKind n nullRange in
mkEntry (productId n nullRange) k
(k : map (prodKind1 n nullRange) [cpoCl, cppoCl]) NoTypeDefn)
[2 .. 5]
cpoId :: Id
cpoId = stringToId "Cpo"
cpoCl :: Kind
cpoCl = ClassKind cpoId
cppoId :: Id
cppoId = stringToId "Cppo"
cppoCl :: Kind
cppoCl = ClassKind cppoId
-- | builtin class map
cpoMap :: ClassMap
cpoMap = Map.fromList
[ (cpoId, ClassInfo rStar $ Set.singleton universe)
, (cppoId, ClassInfo rStar $ Set.singleton cpoCl)]
-- | builtin function map
bOps :: Assumps
bOps = Map.fromList $ map ( \ (i, sc) ->
(i, Set.singleton $ OpInfo sc Set.empty $ NoOpDefn Fun)) bList
-- | environment with predefined names
preEnv :: Env
preEnv = initialEnv { classMap = cpoMap, typeMap = bTypes, assumps = bOps }
mkQualOp :: Id -> TypeScheme -> [Type] -> Range -> Term
mkQualOp i sc tys ps = QualOp Fun (PolyId i [] ps) sc tys Infer ps
mkTerm :: Id -> TypeScheme -> [Type] -> Range -> Term -> Term
mkTerm i sc tys ps t = ApplTerm (mkQualOp i sc tys ps) t ps
mkBinTerm :: Id -> TypeScheme -> [Type] -> Range -> Term -> Term -> Term
mkBinTerm i sc tys ps t1 t2 = mkTerm i sc tys ps $ TupleTerm [t1, t2] ps
mkLogTerm :: Id -> Range -> Term -> Term -> Term
mkLogTerm i ps = mkBinTerm i logType [] ps
mkEqTerm :: Id -> Type -> Range -> Term -> Term -> Term
mkEqTerm i ty ps = mkBinTerm i eqType [ty] ps
unitTerm :: Id -> Range -> Term
unitTerm i ps = mkQualOp i unitTypeScheme [] ps
toBinJunctor :: Id -> [Term] -> Range -> Term
toBinJunctor i ts ps = case ts of
[] -> error "toBinJunctor"
[t] -> t
t : rs -> mkLogTerm i ps t (toBinJunctor i rs ps)