AsToLe.hs revision d976ba42e9d48c289f9c73147669c7e57b7aa98e
{- |
Module : $Header$
Description : final static analysis
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
conversion from As to Le
-}
module HasCASL.AsToLe where
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Id
import Common.Result
import Common.ExtSign
import Common.Prec
import Common.Lib.State
import qualified Data.Map as Map
import qualified Data.Set as Set
import HasCASL.As
import HasCASL.FoldType
import HasCASL.Le
import HasCASL.TypeAna
import HasCASL.ClassAna
import HasCASL.VarDecl
import HasCASL.Unify
import HasCASL.OpDecl
import HasCASL.TypeDecl
import HasCASL.Builtin
import HasCASL.PrintLe
import HasCASL.Merge
import HasCASL.MapTerm
import HasCASL.FoldTerm
import Data.Maybe
-- * extract predicate ids from As for mixfix analysis
type Ids = Set.Set Id
unite :: [Ids] -> Ids
unite = Set.unions
idsOfBasicSpec :: BasicSpec -> Ids
idsOfBasicSpec (BasicSpec l) = unite $ map (idsOfBasicItem . item) l
idsOfBasicItem :: BasicItem -> Ids
idsOfBasicItem bi = case bi of
SigItems i -> idsOfSigItems i
ClassItems _ l _ -> unite $ map (idsOfClassItem . item) l
GenItems l _ -> unite $ map (idsOfSigItems . item) l
Internal l _ -> unite $ map (idsOfBasicItem . item) l
_ -> Set.empty
idsOfClassItem :: ClassItem -> Ids
idsOfClassItem (ClassItem _ l _) = unite $ map (idsOfBasicItem . item) l
idsOfSigItems :: SigItems -> Ids
idsOfSigItems si = case si of
TypeItems _ _ _ -> Set.empty
OpItems b l _ -> unite $ map (idsOfOpItem b . item) l
idsOfOpItem :: OpBrand -> OpItem -> Ids
idsOfOpItem b oi = let
stripCompound (PolyId (Id ts _ ps) _ _) = Id ts [] ps
getPolyId (PolyId i _ _) = i
in case oi of
OpDecl os _ _ _ -> case b of
$ map stripCompound os
_ -> Set.empty
OpDefn p _ _ _ _ -> case b of
Pred -> Set.fromList [getPolyId p, stripCompound p]
_ -> Set.empty
-- * basic analysis
-- | basic analysis
basicAnalysis :: (BasicSpec, Env, GlobalAnnos) ->
Result (BasicSpec, ExtSign Env Symbol, [Named Sentence])
basicAnalysis (b, e, ga) =
let (nb, ne) = runState (anaBasicSpec ga b) e
in Result (reverse $ envDiags ne) $
Just (nb, ExtSign (cleanEnv ne) $ declSymbs ne,
reverse $ sentences ne)
-- | is the signature empty?
isEmptyEnv :: Env -> Bool
isEmptyEnv e = Map.null (classMap e)
&& Map.null (typeMap e)
&& Map.null (assumps e)
-- | is the first argument a subsignature of the second?
isSubEnv :: Env -> Env -> Bool
isSubEnv e1 e2 = if e1 == e2 then True else isEmptyEnv $ diffEnv e1 e2
-- | compute difference of signatures
diffEnv :: Env -> Env -> Env
diffEnv e1 e2 = let
tm = typeMap e2
cm = Map.differenceWith diffClass (classMap e1) $ classMap e2
Result _ (Just acm) = mergeMap mergeClassInfo (classMap e1) $ classMap e2
in initialEnv
{ classMap = cm
, typeMap = diffTypeMap acm (typeMap e1) tm
, assumps = Map.differenceWith (diffAss cm (filterAliases tm)
$ addUnit cm tm) (assumps e1) $ assumps e2
}
-- | compute difference of class infos
diffClass :: ClassInfo -> ClassInfo -> Maybe ClassInfo
diffClass _ _ = Nothing
-- | compute difference of overloaded operations
-> Maybe (Set.Set OpInfo)
diffAss cm tAs tm s1 s2 =
let s3 = diffOps cm tAs tm s1 s2 in
if Set.null s3 then Nothing else Just s3
-> Set.Set OpInfo
diffOps cm tAs tm s1 s2 = if Set.null s1 then s1 else
let (o, os) = Set.deleteFindMin s1
rs = diffOps cm tAs tm os s2
n = mapOpInfo (id, expandAliases tAs) o
in if Set.null $ Set.filter
(instScheme tm 1 (opType n) . expand tAs . opType) s2
then Set.insert n rs else rs
-- | clean up finally accumulated environment
cleanEnv :: Env -> Env
cleanEnv e = diffEnv initialEnv
{ classMap = classMap e
, typeMap = typeMap e
, assumps = assumps e } preEnv
-- | analyse basic spec
anaBasicSpec :: GlobalAnnos -> BasicSpec -> State Env BasicSpec
anaBasicSpec ga b@(BasicSpec l) = do
e <- get
let newAs = assumps e
case opDefn oi of
NoOpDefn Pred -> True
Definition Pred _ -> True
_ -> False)) newAs
newPreds = idsOfBasicSpec b
rels = Set.union preds newPreds
newGa = addBuiltins ga
precs = mkPrecIntMap $ prec_annos newGa
Result _ (Just ne) = merge preEnv e
put ne { preIds = (precs, rels), globAnnos = newGa }
ul <- mapAnM (anaBasicItem newGa) l
return $ BasicSpec ul
-- | analyse basic item
anaBasicItem :: GlobalAnnos -> BasicItem -> State Env BasicItem
anaBasicItem ga bi = case bi of
SigItems i -> fmap SigItems $ anaSigItems ga Loose i
ClassItems inst l ps -> do
ul <- mapAnM (anaClassItem ga inst) l
return $ ClassItems inst ul ps
GenVarItems l ps -> do
ul <- mapM (anaddGenVarDecl True) l
return $ GenVarItems (catMaybes ul) ps
ProgItems l ps -> do
ul <- mapAnMaybe (anaProgEq ga) l
return $ ProgItems ul ps
FreeDatatype l ps -> do
al <- mapAnMaybe ana1Datatype l
tys <- mapM (dataPatToType . item) al
ul <- mapAnMaybe (anaDatatype Free tys) al
addDataSen tys
return $ FreeDatatype ul ps
GenItems l ps -> do
ul <- mapAnM (anaSigItems ga Generated) l
return $ GenItems ul ps
AxiomItems decls fs ps -> do
tm <- gets localTypeVars -- save type map
vs <- gets localVars -- save vars
ds <- mapM (anaddGenVarDecl True) decls
ts <- mapM (anaFormula ga) fs
e <- get
putLocalVars vs -- restore
putLocalTypeVars tm -- restore
let newFs = catMaybes ts
newDs = catMaybes ds
sens = map ( \ (_, f) -> makeNamedSen $ replaceAnnoted (Formula
$ mkEnvForall e (item f) ps) f) newFs
appendSentences sens
return $ AxiomItems newDs (map fst newFs) ps
Internal l ps -> do
ul <- mapAnM (anaBasicItem ga) l
return $ Internal ul ps
freeVars :: Term -> Set.Set VarDecl
freeVars = foldTerm FoldRec
{ foldQualVar = \ _ t -> Set.singleton t
, foldQualOp = \ _ _ _ _ _ _ _ -> Set.empty
, foldApplTerm = \ _ t1 t2 _ -> Set.union t1 t2
, foldTupleTerm = \ _ tts _ -> Set.unions tts
, foldTypedTerm = \ _ ts _ _ _ -> ts
, foldAsPattern = \ _ t ts _ -> Set.insert t ts
, foldQuantifiedTerm = \ _ _ gvs ts _ -> Set.difference ts $
foldr ( \ gv -> case gv of
GenVarDecl t -> Set.insert t
_ -> id) Set.empty gvs
, foldLambdaTerm = \ _ pats _ ts _ -> Set.difference ts $ Set.unions pats
, foldCaseTerm = \ _ ts tts _ -> Set.difference
(Set.unions $ ts : map snd tts) $ Set.unions $ map fst tts
, foldLetTerm = \ _ _ tts ts _ -> Set.difference
(Set.unions $ ts : map snd tts) $ Set.unions $ map fst tts
, foldResolvedMixTerm = \ _ _ _ tts _ -> Set.unions tts
, foldTermToken = \ _ _ -> Set.empty
, foldMixTypeTerm = \ _ _ _ _ -> Set.empty
, foldMixfixTerm = \ _ tts -> Set.unions tts
, foldBracketTerm = \ _ _ tts _ -> Set.unions tts
, foldProgEq = \ _ ps ts _ -> (ps, ts) }
-- | quantify
mkEnvForall :: Env -> Term -> Range -> Term
mkEnvForall e t ps =
let tys = Set.fromList $ map (fst . snd) $ concatMap (leaves (>= 0))
$ getAllTypes t
tyVs = map ( \ (i, TypeVarDefn v vk rk c) -> GenTypeVarDecl $
TypeArg i v vk rk c Other ps) $ Map.toList
$ Map.filterWithKey ( \ i _ -> Set.member i tys) $ localTypeVars e
vs = tyVs ++ map GenVarDecl (Set.toList $ freeVars t)
in if null vs then t else QuantifiedTerm Universal vs t ps
-- | analyse sig items
anaSigItems :: GlobalAnnos -> GenKind -> SigItems -> State Env SigItems
anaSigItems ga gk si = case si of
TypeItems inst l ps -> do
ul <- anaTypeItems ga gk l
return $ TypeItems inst ul ps
OpItems b l ps -> do
ul <- mapM (anaOpItem ga b) l
let al = foldr (\ i -> case item i of
Nothing -> id
Just v -> (replaceAnnoted v i :)) [] ul
return $ OpItems b al ps
-- | analyse a class item
anaClassItem :: GlobalAnnos -> Instance -> ClassItem
-> State Env ClassItem
anaClassItem ga _ (ClassItem d l ps) = do
cd <- anaClassDecls d
ul <- mapAnM (anaBasicItem ga) l
return $ ClassItem cd ul ps