AsToLe.hs revision cdaff0507c1b7240e2660dbb311f9c4646a6d14a
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
conversion from As to Le
-}
module HasCASL.AsToLe where
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Lib.State
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.Result
import Common.Id
import HasCASL.As
import HasCASL.AsToIds
import HasCASL.Le
import HasCASL.ClassDecl
import HasCASL.VarDecl
import HasCASL.Unify
import HasCASL.OpDecl
import HasCASL.TypeDecl
import HasCASL.Builtin
import Data.Maybe
import Data.List
-- | basic analysis
basicAnalysis :: (BasicSpec, Env, GlobalAnnos) ->
Result (BasicSpec, Env, Env, [Named Sentence])
basicAnalysis (b, e, ga) =
let (nb, ne) = runState (anaBasicSpec ga b) e
ce = cleanEnv ne
in Result (reverse $ envDiags ne) $
Just (nb, diffEnv ce e, ce, reverse $ sentences ne)
-- | is the signature empty?
isEmptyEnv :: Env -> Bool
isEmptyEnv e = Map.isEmpty (classMap e)
&& Map.isEmpty (typeMap e)
&& Map.isEmpty (assumps e)
-- | is the first argument a subsignature of the second?
isSubEnv :: Env -> Env -> Bool
isSubEnv e1 e2 = isEmptyEnv (diffEnv e1 e2)
-- a rough equality
instance Eq Env where
e1 == e2 = isSubEnv e1 e2 && isSubEnv e2 e1
-- | compute difference of signatures
diffEnv :: Env -> Env -> Env
diffEnv e1 e2 = let tm = typeMap e2 in
initialEnv
{ classMap = Map.differenceWith diffClass (classMap e1) (classMap e2)
, typeMap = Map.differenceWith diffType (typeMap e1) tm
, assumps = Map.differenceWith (diffAss tm) (assumps e1) (assumps e2)
}
-- | compute difference of class infos
diffClass :: ClassInfo -> ClassInfo -> Maybe ClassInfo
diffClass _ _ = Nothing
-- | compute difference of type infos
diffType :: TypeInfo -> TypeInfo -> Maybe TypeInfo
diffType _ _ = Nothing
-- | compute difference of overloaded operations
diffAss :: TypeMap -> OpInfos -> OpInfos -> Maybe OpInfos
diffAss tm (OpInfos l1) (OpInfos l2) =
let l3 = diffOps l1 l2 in
if null l3 then Nothing else Just (OpInfos l3)
where diffOps [] _ = []
diffOps (o:os) ps =
let rs = diffOps os ps in
if any (\ p -> isUnifiable tm 0 (opType o) (opType p)) ps
then rs else o:rs
-- | clean up finally accumulated environment
cleanEnv :: Env -> Env
cleanEnv e = diffEnv initialEnv
{ classMap = classMap e
, typeMap = Map.filter (not . isTypeVarDefn) $ typeMap e
, assumps = filterVars $ assumps e }
preEnv
-- | environment with predefined types and operations
preEnv :: Env
preEnv = initialEnv { typeMap = addUnit Map.empty
, assumps = addOps Map.empty }
addPreIds :: (PrecMap, Set.Set Id) -> State Env ()
addPreIds r = do e <- get
put e { preIds = r }
-- | analyse basic spec
anaBasicSpec :: GlobalAnnos -> BasicSpec -> State Env BasicSpec
anaBasicSpec ga b@(BasicSpec l) = do
tm <- gets typeMap
as <- gets assumps
putTypeMap $ addUnit tm
putAssumps $ addOps as
newAs <- gets assumps
let preds = Set.fromDistinctAscList
$ Map.keys $ Map.filter (any ( \ oi ->
case opDefn oi of
NoOpDefn Pred -> True
Definition Pred _ -> True
_ -> False) . opInfos) newAs
newPreds = idsOfBasicSpec b
rels = Set.union preds newPreds
newGa = addBuiltins ga
precs = mkPrecIntMap $ prec_annos newGa
addPreIds (precs, rels)
ul <- mapAnM (anaBasicItem newGa) l
return $ BasicSpec ul
-- | analyse basic item
anaBasicItem :: GlobalAnnos -> BasicItem -> State Env BasicItem
anaBasicItem ga (SigItems i) = fmap SigItems $ anaSigItems ga Loose i
anaBasicItem ga (ClassItems inst l ps) =
do ul <- mapAnM (anaClassItem ga inst) l
return $ ClassItems inst ul ps
anaBasicItem _ (GenVarItems l ps) =
do ul <- mapM anaGenVarDecl l
return $ GenVarItems (catMaybes ul) ps
anaBasicItem ga (ProgItems l ps) =
do ul <- mapAnM (anaProgEq ga) l
return $ ProgItems ul ps
anaBasicItem _ (FreeDatatype l ps) =
do al <- mapAnMaybe ana1Datatype l
let tys = map (dataPatToType . item) al
ul <- mapAnM (anaDatatype Free Plain tys) al
addDataSen tys
return $ FreeDatatype ul ps
anaBasicItem ga (GenItems l ps) =
do ul <- mapAnM (anaSigItems ga Generated) l
return $ GenItems ul ps
anaBasicItem ga (AxiomItems decls fs ps) =
do tm <- gets typeMap -- save type map
as <- gets assumps -- save vars
ds <- mapM anaGenVarDecl decls
ts <- mapM (anaFormula ga) fs
putTypeMap tm -- restore
putAssumps as -- restore
let newFs = catMaybes ts
sens = map ( \ f -> NamedSen (getRLabel f) $ Formula $ item f)
newFs
appendSentences sens
return $ AxiomItems (catMaybes ds) newFs ps
anaBasicItem ga (Internal l ps) =
do ul <- mapAnM (anaBasicItem ga) l
return $ Internal ul ps
-- | analyse sig items
anaSigItems :: GlobalAnnos -> GenKind -> SigItems -> State Env SigItems
anaSigItems ga gk (TypeItems inst l ps) =
do ul <- anaTypeItems ga gk inst l
return $ TypeItems inst ul ps
anaSigItems ga _ (OpItems b l ps) =
do ul <- mapAnM (anaOpItem ga b) l
return $ OpItems b ul ps
-- | analyse a class item
anaClassItem :: GlobalAnnos -> Instance -> ClassItem
-> State Env ClassItem
anaClassItem ga _ (ClassItem d l ps) =
do cd <- anaClassDecls d
ul <- mapAnM (anaBasicItem ga) l
return $ ClassItem cd ul ps