AsToLe.hs revision afa6848d579d235c9677e1ab477916df8e5ae11a
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
conversion from As to Le
-}
module HasCASL.AsToLe where
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Id
import Common.Result
import Common.Lib.State
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import HasCASL.As
import HasCASL.Le
import HasCASL.TypeAna
import HasCASL.ClassAna
import HasCASL.VarDecl
import HasCASL.Unify
import HasCASL.OpDecl
import HasCASL.TypeDecl
import HasCASL.Builtin
import HasCASL.MapTerm
import Data.Maybe
-- * extract predicate ids from As for mixfix analysis
type Ids = Set.Set Id
unite :: [Ids] -> Ids
unite = Set.unions
idsOfBasicSpec :: BasicSpec -> Ids
idsOfBasicSpec (BasicSpec l) = unite $ map (idsOfBasicItem . item) l
idsOfBasicItem :: BasicItem -> Ids
idsOfBasicItem (SigItems i) = idsOfSigItems i
idsOfBasicItem (ClassItems _ l _ ) = unite $ map (idsOfClassItem . item) l
idsOfBasicItem (GenItems l _) = unite $ map (idsOfSigItems . item) l
idsOfBasicItem (Internal l _) = unite $ map (idsOfBasicItem . item) l
idsOfBasicItem _ = Set.empty
idsOfClassItem :: ClassItem -> Ids
idsOfClassItem (ClassItem _ l _) = unite $ map (idsOfBasicItem . item) l
idsOfSigItems :: SigItems -> Ids
idsOfSigItems (TypeItems _ _ _) = Set.empty
idsOfSigItems (OpItems b l _) = unite $ map (idsOfOpItem b . item) l
idsOfOpItem :: OpBrand -> OpItem -> Ids
idsOfOpItem b (OpDecl os _ _ _) =
let ois = Set.fromList $ map ( \ (OpId i _ _) -> i) os
in case b of
Pred -> ois
_ -> Set.empty
idsOfOpItem b (OpDefn (OpId i _ _) _ _ _ _ _) =
case b of
Pred -> (Set.singleton i)
_ -> Set.empty
-- * basic analysis
-- | basic analysis
basicAnalysis :: (BasicSpec, Env, GlobalAnnos) ->
Result (BasicSpec, Env, Env, [Named Sentence])
basicAnalysis (b, e, ga) =
let (nb, ne) = runState (anaBasicSpec ga b) e
ce = cleanEnv ne
in Result (reverse $ envDiags ne) $
Just (nb, diffEnv ce e, ce, reverse $ sentences ne)
-- | is the signature empty?
isEmptyEnv :: Env -> Bool
isEmptyEnv e = Map.null (classMap e)
&& Map.null (typeMap e)
&& Map.null (assumps e)
-- | is the first argument a subsignature of the second?
isSubEnv :: Env -> Env -> Bool
isSubEnv e1 e2 = isEmptyEnv $ diffEnv e1 e2
-- a rough equality
instance Eq Env where
e1 == e2 = isSubEnv e1 e2 && isSubEnv e2 e1
-- | compute difference of signatures
diffEnv :: Env -> Env -> Env
diffEnv e1 e2 = let tm = typeMap e2 in
initialEnv
{ classMap = Map.differenceWith diffClass (classMap e1) (classMap e2)
, typeMap = Map.differenceWith diffType (typeMap e1) tm
, assumps = Map.differenceWith (diffAss $ addUnit tm)
(assumps e1) (assumps e2)
}
-- | compute difference of class infos
diffClass :: ClassInfo -> ClassInfo -> Maybe ClassInfo
diffClass _ _ = Nothing
-- | compute difference of type infos
diffType :: TypeInfo -> TypeInfo -> Maybe TypeInfo
diffType _ _ = Nothing
-- | compute difference of overloaded operations
diffAss :: TypeMap -> OpInfos -> OpInfos -> Maybe OpInfos
diffAss tm (OpInfos l1) (OpInfos l2) =
let l3 = diffOps l1 l2 in
if null l3 then Nothing else Just (OpInfos l3)
where diffOps [] _ = []
diffOps (o:os) ps =
let rs = diffOps os ps
n = mapOpInfo (id, expandAlias tm) o
in if any (instScheme tm 1 (opType n) . expand tm . opType) ps
then rs else n:rs
-- | environment with predefined types and operations
addPreDefs :: Env -> Env
addPreDefs e = e { typeMap = addUnit $ typeMap e
, assumps = addOps $ assumps e }
-- | environment with predefined types and operations
preEnv :: Env
preEnv = addPreDefs initialEnv
-- | clean up finally accumulated environment
cleanEnv :: Env -> Env
cleanEnv e = diffEnv initialEnv
{ classMap = classMap e
, typeMap = typeMap e
, assumps = assumps e }
preEnv where
-- | analyse basic spec
anaBasicSpec :: GlobalAnnos -> BasicSpec -> State Env BasicSpec
anaBasicSpec ga b@(BasicSpec l) = do
e <- get
let newAs = assumps e
preds = Rel.keysSet $ Map.filter (any ( \ oi ->
case opDefn oi of
NoOpDefn Pred -> True
Definition Pred _ -> True
_ -> False) . opInfos) newAs
newPreds = idsOfBasicSpec b
rels = Set.union preds newPreds
newGa = addBuiltins ga
precs = mkPrecIntMap $ prec_annos newGa
put (addPreDefs e) { preIds = (precs, rels) }
ul <- mapAnM (anaBasicItem newGa) l
return $ BasicSpec ul
-- | analyse basic item
anaBasicItem :: GlobalAnnos -> BasicItem -> State Env BasicItem
anaBasicItem ga (SigItems i) = fmap SigItems $ anaSigItems ga Loose i
anaBasicItem ga (ClassItems inst l ps) =
do ul <- mapAnM (anaClassItem ga inst) l
return $ ClassItems inst ul ps
anaBasicItem _ (GenVarItems l ps) =
do ul <- mapM (anaddGenVarDecl True) l
return $ GenVarItems (catMaybes ul) ps
anaBasicItem ga (ProgItems l ps) =
do ul <- mapAnMaybe (anaProgEq ga) l
return $ ProgItems ul ps
anaBasicItem _ (FreeDatatype l ps) =
do al <- mapAnMaybe ana1Datatype l
tys <- mapM (dataPatToType . item) al
ul <- mapAnMaybe (anaDatatype Free Plain tys) al
addDataSen tys
return $ FreeDatatype ul ps
anaBasicItem ga (GenItems l ps) =
do ul <- mapAnM (anaSigItems ga Generated) l
return $ GenItems ul ps
anaBasicItem ga (AxiomItems decls fs ps) =
do tm <- gets typeMap -- save type map
as <- gets assumps -- save vars
ds <- mapM (anaddGenVarDecl True) decls
ts <- mapM (anaFormula ga) fs
putTypeMap tm -- restore
putAssumps as -- restore
let newFs = catMaybes ts
sens = map ( \ f -> NamedSen (getRLabel f) True $ Formula $ item f)
newFs
appendSentences sens
return $ AxiomItems (catMaybes ds) newFs ps
anaBasicItem ga (Internal l ps) =
do ul <- mapAnM (anaBasicItem ga) l
return $ Internal ul ps
-- | analyse sig items
anaSigItems :: GlobalAnnos -> GenKind -> SigItems -> State Env SigItems
anaSigItems ga gk (TypeItems inst l ps) =
do ul <- anaTypeItems ga gk inst l
return $ TypeItems inst ul ps
anaSigItems ga _ (OpItems b l ps) =
do ul <- mapAnMaybe (anaOpItem ga b) l
return $ OpItems b ul ps
-- | analyse a class item
anaClassItem :: GlobalAnnos -> Instance -> ClassItem
-> State Env ClassItem
anaClassItem ga _ (ClassItem d l ps) =
do cd <- anaClassDecls d
ul <- mapAnM (anaBasicItem ga) l
return $ ClassItem cd ul ps