AsToLe.hs revision 7de39d39bc1700cc8a9bb9df90b920aad9e18d4a
{- |
Module : $Header$
Description : final static analysis
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
conversion from As to Le
-}
module HasCASL.AsToLe where
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Id
import Common.Result
import Common.Prec
import Common.Lib.State
import qualified Data.Map as Map
import qualified Data.Set as Set
import HasCASL.As
import HasCASL.Le
import HasCASL.TypeAna
import HasCASL.ClassAna
import HasCASL.VarDecl
import HasCASL.Unify
import HasCASL.OpDecl
import HasCASL.TypeDecl
import HasCASL.Builtin
import HasCASL.MapTerm
import Data.Maybe
-- * extract predicate ids from As for mixfix analysis
type Ids = Set.Set Id
unite :: [Ids] -> Ids
unite = Set.unions
idsOfBasicSpec :: BasicSpec -> Ids
idsOfBasicSpec (BasicSpec l) = unite $ map (idsOfBasicItem . item) l
idsOfBasicItem :: BasicItem -> Ids
idsOfBasicItem bi = case bi of
SigItems i -> idsOfSigItems i
ClassItems _ l _ -> unite $ map (idsOfClassItem . item) l
GenItems l _ -> unite $ map (idsOfSigItems . item) l
Internal l _ -> unite $ map (idsOfBasicItem . item) l
_ -> Set.empty
idsOfClassItem :: ClassItem -> Ids
idsOfClassItem (ClassItem _ l _) = unite $ map (idsOfBasicItem . item) l
idsOfSigItems :: SigItems -> Ids
idsOfSigItems si = case si of
TypeItems _ _ _ -> Set.empty
OpItems b l _ -> unite $ map (idsOfOpItem b . item) l
idsOfOpItem :: OpBrand -> OpItem -> Ids
idsOfOpItem b oi = let stripCompound (Id ts _ ps) = Id ts [] ps in case oi of
OpDecl os _ _ _ -> case b of
$ map stripCompound os
_ -> Set.empty
OpDefn i _ _ _ _ _ -> case b of
Pred -> Set.fromList [i, stripCompound i]
_ -> Set.empty
-- * basic analysis
-- | basic analysis
basicAnalysis :: (BasicSpec, Env, GlobalAnnos) ->
Result (BasicSpec, Env, [Named Sentence])
basicAnalysis (b, e, ga) =
let (nb, ne) = runState (anaBasicSpec ga b) e
in Result (reverse $ envDiags ne) $
Just (nb, cleanEnv ne, reverse $ sentences ne)
-- | is the signature empty?
isEmptyEnv :: Env -> Bool
isEmptyEnv e = Map.null (classMap e)
&& Map.null (typeMap e)
&& Map.null (assumps e)
-- | is the first argument a subsignature of the second?
isSubEnv :: Env -> Env -> Bool
isSubEnv e1 e2 = if e1 == e2 then True else isEmptyEnv $ diffEnv e1 e2
-- a rough equality
instance Eq Env where
e1 == e2 = (classMap e1, typeMap e1, assumps e1) ==
(classMap e2, typeMap e2, assumps e2)
-- | compute difference of signatures
diffEnv :: Env -> Env -> Env
diffEnv e1 e2 = let tm = typeMap e2 in
initialEnv
{ classMap = Map.differenceWith diffClass (classMap e1) (classMap e2)
, typeMap = Map.differenceWith diffType (typeMap e1) tm
, assumps = Map.differenceWith (diffAss (filterAliases tm) $ addUnit tm)
(assumps e1) (assumps e2)
}
-- | compute difference of class infos
diffClass :: ClassInfo -> ClassInfo -> Maybe ClassInfo
diffClass _ _ = Nothing
-- | compute difference of type infos
diffType :: TypeInfo -> TypeInfo -> Maybe TypeInfo
diffType _ _ = Nothing
-- | compute difference of overloaded operations
diffAss :: TypeMap -> TypeMap -> OpInfos -> OpInfos -> Maybe OpInfos
diffAss tAs tm (OpInfos l1) (OpInfos l2) =
let l3 = diffOps l1 l2 in
if null l3 then Nothing else Just (OpInfos l3)
where diffOps [] _ = []
diffOps (o:os) ps =
let rs = diffOps os ps
n = mapOpInfo (id, expandAliases tAs) o
in if any (instScheme tm 1 (opType n) . expand tAs . opType) ps
then rs else n:rs
-- | environment with predefined types and operations
addPreDefs :: Env -> Env
addPreDefs e = e
{ typeMap = addUnit $ typeMap e
, assumps = addOps $ assumps e }
-- | environment with predefined types and operations
preEnv :: Env
preEnv = addPreDefs initialEnv
-- | clean up finally accumulated environment
cleanEnv :: Env -> Env
cleanEnv e = diffEnv initialEnv
{ classMap = classMap e
, typeMap = typeMap e
, assumps = assumps e } preEnv
-- | analyse basic spec
anaBasicSpec :: GlobalAnnos -> BasicSpec -> State Env BasicSpec
anaBasicSpec ga b@(BasicSpec l) = do
e <- get
let newAs = assumps e
preds = Map.keysSet $ Map.filter (any ( \ oi ->
case opDefn oi of
NoOpDefn Pred -> True
Definition Pred _ -> True
_ -> False) . opInfos) newAs
newPreds = idsOfBasicSpec b
rels = Set.union preds newPreds
newGa = addBuiltins ga
precs = mkPrecIntMap $ prec_annos newGa
put (addPreDefs e) { preIds = (precs, rels), globAnnos = newGa }
ul <- mapAnM (anaBasicItem newGa) l
return $ BasicSpec ul
-- | analyse basic item
anaBasicItem :: GlobalAnnos -> BasicItem -> State Env BasicItem
anaBasicItem ga bi = case bi of
SigItems i -> fmap SigItems $ anaSigItems ga Loose i
ClassItems inst l ps -> do
ul <- mapAnM (anaClassItem ga inst) l
return $ ClassItems inst ul ps
GenVarItems l ps -> do
ul <- mapM (anaddGenVarDecl True) l
return $ GenVarItems (catMaybes ul) ps
ProgItems l ps -> do
ul <- mapAnMaybe (anaProgEq ga) l
return $ ProgItems ul ps
FreeDatatype l ps -> do
al <- mapAnMaybe ana1Datatype l
tys <- mapM (dataPatToType . item) al
ul <- mapAnMaybe (anaDatatype Free tys) al
addDataSen tys
return $ FreeDatatype ul ps
GenItems l ps -> do
ul <- mapAnM (anaSigItems ga Generated) l
return $ GenItems ul ps
AxiomItems decls fs ps -> do
tm <- gets typeMap -- save type map
as <- gets assumps -- save vars
ds <- mapM (anaddGenVarDecl True) decls
ts <- mapM (anaFormula ga) fs
putTypeMap tm -- restore
putAssumps as -- restore
let newFs = catMaybes ts
newDs = catMaybes ds
sens = map ( \ (_, f) -> makeNamed (getRLabel f) $ Formula
$ mkForall newDs (item f) ps) newFs
appendSentences sens
return $ AxiomItems newDs (map fst newFs) ps
Internal l ps -> do
ul <- mapAnM (anaBasicItem ga) l
return $ Internal ul ps
-- | quantify
mkForall :: [GenVarDecl] -> Term -> Range -> Term
mkForall _vs t _ps = t -- look for a minimal quantification
-- if null vs then t else QuantifiedTerm Universal vs t ps
-- | analyse sig items
anaSigItems :: GlobalAnnos -> GenKind -> SigItems -> State Env SigItems
anaSigItems ga gk si = case si of
TypeItems inst l ps -> do
ul <- anaTypeItems ga gk l
return $ TypeItems inst ul ps
OpItems b l ps -> do
ul <- mapAnMaybe (anaOpItem ga b) l
return $ OpItems b ul ps
-- | analyse a class item
anaClassItem :: GlobalAnnos -> Instance -> ClassItem
-> State Env ClassItem
anaClassItem ga _ (ClassItem d l ps) = do
cd <- anaClassDecls d
ul <- mapAnM (anaBasicItem ga) l
return $ ClassItem cd ul ps