Grothendieck.hs revision cc0298f887b0416641a8b87acfae2c2983caa062
-- needs ghc -fglasgow-exts
$Id$
Till Mossakowski
The Grothendieck logic is defined to be the
heterogeneous logic over the logic graph.
This will be the logic over which the data
structures and algorithms for specification in-the-large
are built.
References:
R. Diaconescu:
Grothendieck institutions
J. applied categorical structures 10, 2002, p. 383-402.
T. Mossakowski:
Heterogeneous development graphs and heterogeneous borrowing
Fossacs 2002, LNCS 2303, p. 326-341
T. Mossakowski: Foundations of heterogeneous specification
Submitted
T. Mossakowski:
Relating CASL with Other Specification Languages:
the Institution Level
Theoretical Computer Science 286, 2002, p. 367-475
Todo:
-}
module Grothendieck where
import Logic
import LogicRepr
import PrettyPrint
import Pretty
import PPUtils (fsep_latex, comma_latex)
------------------------------------------------------------------
--"Grothendieck" versions of the various parts of type class Logic
------------------------------------------------------------------
data G_basic_spec = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_basic_spec lid basic_spec
instance Show G_basic_spec where
show (G_basic_spec _ s) = show s
instance PrettyPrint G_basic_spec where
printText0 ga (G_basic_spec _ s) = printText0 ga s
printLatex0 ga (G_basic_spec _ s) = printLatex0 ga s
instance Eq G_basic_spec where
(G_basic_spec i1 s1) == (G_basic_spec i2 s2) =
coerce i1 i2 s1 == Just s2
data G_sentence = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_sentence lid sentence
instance Show G_sentence where
show (G_sentence _ s) = show s
data G_l_sentence_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_l_sentence lid [(String,sentence)]
data G_sign = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_sign lid sign
instance Eq G_sign where
(G_sign i1 sigma1) == (G_sign i2 sigma2) =
coerce i1 i2 sigma1 == Just sigma2
instance Show G_sign where
show (G_sign _ s) = show s
data G_sign_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_sign_list lid [sign]
data G_symbol = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_symbol lid symbol
instance Show G_symbol where
show (G_symbol _ s) = show s
instance Eq G_symbol where
(G_symbol i1 s1) == (G_symbol i2 s2) =
coerce i1 i2 s1 == Just s2
data G_symb_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_symb_items_list lid [symb_items]
instance Show G_symb_items_list where
show (G_symb_items_list _ l) = show l
instance PrettyPrint G_symb_items_list where
printText0 ga (G_symb_items_list _ l) =
fsep $ punctuate comma $ map (printText0 ga) l
printLatex0 ga (G_symb_items_list _ l) =
fsep_latex $ punctuate comma_latex $ map (printLatex0 ga) l
instance Eq G_symb_items_list where
(G_symb_items_list i1 s1) == (G_symb_items_list i2 s2) =
coerce i1 i2 s1 == Just s2
data G_symb_map_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_symb_map_items_list lid [symb_map_items]
instance Show G_symb_map_items_list where
show (G_symb_map_items_list _ l) = show l
instance PrettyPrint G_symb_map_items_list where
printText0 ga (G_symb_map_items_list _ l) =
fsep $ punctuate comma $ map (printText0 ga) l
printLatex0 ga (G_symb_map_items_list _ l) =
fsep_latex $ punctuate comma_latex $ map (printLatex0 ga) l
instance Eq G_symb_map_items_list where
(G_symb_map_items_list i1 s1) == (G_symb_map_items_list i2 s2) =
coerce i1 i2 s1 == Just s2
data G_diagram = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_diagram lid (Diagram sign morphism)
data G_sublogics = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_sublogics lid sublogics
data G_morphism = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
G_morphism lid morphism
----------------------------------------------------------------
-- Existential types for the logic graph
----------------------------------------------------------------
data AnyLogic = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
Logic lid
data AnyRepresentation = forall lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 .
(Logic lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1,
Logic lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2) =>
Repr(LogicRepr lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2)
type LogicGraph = ([AnyLogic],[AnyRepresentation])
{- This does not work due to needed ordering:
instance Functor Set where
fmap = mapSet
instance Monad Set where
return = unitSet
m >>= k = unionManySets (setToList (fmap k m))
-}
------------------------------------------------------------------
-- The Grothendieck signature category
------------------------------------------------------------------
-- composition in diagrammatic order
comp_anyrepr :: AnyRepresentation -> AnyRepresentation -> Maybe AnyRepresentation
comp_anyrepr
(Repr (r1 :: LogicRepr lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1
lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2))
(Repr (r2 :: LogicRepr lid3 sublogics3 basic_spec3 sentence3
symb_items3 symb_map_items3
sign3 morphism3 symbol3 raw_symbol3
lid4 sublogics4 basic_spec4 sentence4 symb_items4 symb_map_items4
sign4 morphism4 symbol4 raw_symbol4)) =
do r3 <- coerce (target r1) (source r2) r2 :: Maybe(
LogicRepr lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2
lid4 sublogics4 basic_spec4 sentence4 symb_items4 symb_map_items4
sign4 morphism4 symbol4 raw_symbol4)
r4 <- comp_repr r1 r3
return (Repr r4)
data GMorphism = forall lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 .
(Logic lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1,
Logic lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2) =>
GMorphism lid1 lid2
(LogicRepr lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2)
sign1 morphism2
instance Eq GMorphism where
(GMorphism lid1 lid2 r1 sigma1 mor1) == (GMorphism lid3 lid4 r2 sigma2 mor2)
= maybe False id
(do r2' <- coerce lid1 lid3 r2
sigma2' <- coerce lid1 lid3 sigma2
mor2' <- coerce lid2 lid4 mor2
return (r1 == r2' && sigma1 == sigma2' && mor1==mor2'))
data Grothendieck = Grothendieck deriving Show
instance Language Grothendieck where
instance Category Grothendieck G_sign GMorphism where
ide _ (G_sign lid sigma) =
GMorphism lid lid (id_repr lid) sigma (ide lid sigma)
comp _
(GMorphism lid1 lid2 r1 sigma1 mor1)
(GMorphism lid3 lid4 r2 sigma2 mor2) =
do r2' <- coerce lid2 lid3 r2
r3 <- comp_repr r1 r2'
mor1' <- coerce lid2 lid3 mor1
mor1'' <- map_morphism r2 mor1'
mor <- comp lid4 mor2 mor1''
return (GMorphism lid1 lid4 r3 sigma1 mor)
dom _ (GMorphism lid1 lid2 r sigma mor) = G_sign lid1 sigma
cod _ (GMorphism lid1 lid2 r sigma mor) = G_sign lid2 (cod lid2 mor)
legal_obj _ (G_sign lid sigma) = legal_obj lid sigma
legal_mor _ (GMorphism lid1 lid2 r sigma mor) =
legal_mor lid2 mor && case map_sign r sigma of
Just (sigma',_) -> sigma' == cod lid2 mor
Nothing -> False
gEmbed :: G_morphism -> GMorphism
gEmbed (G_morphism lid mor) =
GMorphism lid lid (id_repr lid) (dom lid mor) mor