gg.tmpl.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{- |
Module : $EmptyHeader$
Description : <optional short description entry>
Copyright : (c) <Authors or Affiliations>
License : GPLv2 or higher, see LICENSE.txt
Maintainer : <email>
Stability : unstable | experimental | provisional | stable | frozen
Portability : portable | non-portable (<reason>)
<optional description>
-}
// -------------------------------
// Matchings for logics & bin ops
// -------------------------------
BEGIN_MATCHINGS
BEGIN_K_MATCHING
instance UnaryMatch L_ID_ L_PID_ where
matchu (Clause (pl,nl)) =
let (nls,pls) = (map neg (striplst nl), striplst pl)
in (map disjlst (map (\x -> x:nls) pls))
END_K_MATCHING
BEGIN_HM_MATCHING
instance UnaryMatch L_ID_ L_PID_ where
matchu (Clause (pl,nl)) =
let isag a (_UNOP_ ind x) = (ind == a); -- is it agent a?
isag a _ = False;
ag (_UNOP_ ind x) = Just ind; -- find the agent
ag _ = Nothing;
ags = nub $ catMaybes (map ag (pl ++ nl)); -- the set of agents we have
aglits = map (\x -> (filter (isag x) pl, filter (isag x) nl)) ags;
-- this is a list of pairs (pl, nl) for each agent
strlits = map (\(x, y) -> ((striplst x), map neg (striplst y))) aglits;
-- the same with boxes stripped
comb (pls, nls) = map disjlst (map (\x -> x:nls) pls);
-- turn a combination pls/nls into a list of formulas
fllist = map comb strlits;
-- a list of lists consisting of formulas
in concat fllist
END_HM_MATCHING
BEGIN_KD_MATCHING
instance UnaryMatch L_ID_ L_PID_ where
matchu (Clause (pl,nl)) =
let (nls,pls) = (map neg (striplst nl), striplst pl)
xnls = listify nls
in map disjlst ((map (\x -> x:nls) pls) ++ xnls)
END_KD_MATCHING
BEGIN_C_MATCHING
instance UnaryMatch L_ID_ L_PID_ where
matchu (Clause (pls,nls)) =
let pNs = concatMap stripFull_ID_ pls
(bnls,bpls) = (onlyboxes nls, onlyboxes pls)
allneg = map neg (striplst nls)
xallneg = listify allneg
in map disjlst ((map (pNs++) (cmatch_ID_ bpls bnls)) ++ xallneg)
agents_ID_ :: Int; agents_ID_ = 10
stripFull_ID_ :: L_ID_ -> [L_PID_]
stripFull_ID_ (_UNOP_ ints phi) | (ints == [1..agents_ID_]) = [phi] | otherwise = []
stripFull_ID_ _ = [];
-- form 'pw disj subsets of +ve lit' parts of matching clause
cmatch_ID_ :: [L_ID_] -> [L_ID_] -> [[L_PID_]]
cmatch_ID_ [] _ = []
cmatch_ID_ ((_UNOP_ pset pphi):pls) nls =
let subnls = filter (\(_UNOP_ s _) -> ((s `intersect` pset)==s)) nls
sublsts = nub $ map (\(_UNOP_ s _) -> s) subnls
maxpwdjs = rmsub $ sortBy cmpsize (filter (pwdisj) (pwrset sublsts))
negmats = map (neglst) (map (striplst) (concatMap (ch_ID_ subnls) maxpwdjs))
in (map ([pphi]++) negmats) ++ (cmatch_ID_ pls nls)
-- given lits and pairwise disj lists, form pairwise disj lit lists
ch_ID_ :: [L_ID_] -> [[Int]] -> [[L_ID_]]
ch_ID_ _ [] = [[]]
ch_ID_ lits allsets@(set:sets) =
let ls = filter (\(_UNOP_ t _) -> set==t) lits
in if null(ls) then [] else
(map ([head ls]++) (ch_ID_ lits sets)) ++ (ch_ID_ (lits\\[head ls]) allsets)
END_C_MATCHING
BEGIN_P_MATCHING
instance UnaryMatch L_ID_ L_PID_ where
matchu (Clause (pls,nls)) =
let (bpls,bnls) = (onlyboxes pls, onlyboxes nls)
allcls = [Clause(ps,ns) |
ps <- (pwrset bpls), ns <- (pwrset bnls)] \\ [Clause([],[])]
xrats xs = map (\(_UNOP_ k _) -> k) xs
bnd (Clause(ps,ns)) = pmlbnd ((xrats ps),(xrats ns))
tups cl@(Clause(ps,ns)) =
[(pts,nts,k)| pts <- (tuprange (bnd cl) (length ps)),
nts <- (tuprange (bnd cl) (length ns)),
k <- [-(bnd cl)..(bnd cl)]]
sctups cl = filter (pmlsc_ID_ cl) (tups cl)
-- find minimal elts of those tupes satisfying the side condition
leq :: ([Int],[Int], Int) -> ([Int],[Int], Int) -> Bool
leq (p1, n1, k1) (p2, n2, k2) = (k1 == k2) && (and (( map (\(x, y) -> x <= y) (( zip p1 p2) ++ (zip n1 n2)))))
geq :: ([Int],[Int], Int) -> ([Int],[Int], Int) -> Bool
geq (p1, n1, k1) (p2, n2, k2) = (k1 == k2) && (and (( map (\(x, y) -> x >= y) (( zip p1 p2) ++ (zip n1 n2)))))
ftups :: [([Int], [Int], Int)] -> [([Int], [Int], Int)] -> [([Int], [Int], Int)]
ftups [] bs = bs
ftups (a:as) bs
| any (\x -> geq x a) bs = ftups as bs
| otherwise = a:(filter (\x -> not (leq x a)) bs)
clmatch cl = map (pmlcnf_ID_ cl) (ftups (sctups cl) [] )
-- clmatch cl = map (pmlcnf_ID_ cl) (sctups cl)
in nub $ concatMap clmatch allcls
pmlcnf_ID_ :: Clause L_ID_ -> ([Int],[Int], Int) -> [L_PID_]
pmlcnf_ID_ (Clause(pls,nls)) (prs,nrs,k) =
let (pinds,ninds) = (toinds prs,toinds nrs)
(spls,snls) = (striplst pls,striplst nls)
allinds = [(ps,ns) | ps <- (pwrset pinds), ns <- (pwrset ninds)]
cnfinds = filter (\(ps,ns) -> (sum$img ps prs) - (sum$img ns nrs) < k) allinds
getJ (ps,ns) = (img ps spls) ++ (img ns snls)
getnJ (ps,ns) = (img (pinds \\ ps) spls) ++ (img (ninds \\ ns) snls)
in map (\rs -> ndisj(getJ rs) \/ disj(getnJ rs)) cnfinds
pmlsc_ID_ :: Clause L_ID_ -> ([Int],[Int], Int) -> Bool
pmlsc_ID_ (Clause(pls,nls)) (pints,nints,k) =
let (rpints,rnints) = (map fromIntegral pints,map fromIntegral nints)
psum = sum $ zipbin (*) rpints (map (\(_UNOP_ x _)->fromRational(x)) pls)
nsum = sum $ zipbin (*) rnints (map (\(_UNOP_ x _)-> fromRational(-x)) nls)
in if null(pints) then (psum + nsum < fromIntegral(k))
else (psum + nsum <= fromIntegral(k))
pmlbnd :: ([Rational],[Rational]) -> Int
-- pmlbnd _ = 1
pmlbnd (rps,rns) =
let n = (length rps) + (length rns)
toints rs = concatMap (\r -> [numerator r,denominator r]) rs
allints = (toints rps) ++ (toints rns)
logint n = ceiling(logBase 2 (1 + n))
logsum = sum $ map (\n -> logint (fromIntegral(n))) allints
in 20*n*n*(1+n) + 10*n*n*logsum
END_P_MATCHING
BEGIN_G_MATCHING
instance UnaryMatch L_ID_ L_PID_ where
matchu (Clause (pls,nls)) =
let (bpls,bnls) = (onlyboxes pls, onlyboxes nls)
allcls = [Clause(ps,ns) |
ps <- (pwrset bpls), ns <- (pwrset bnls)] \\ [Clause([],[])]
xints xs = map (\(_UNOP_ k _) -> k) xs
bnd (Clause(ps,ns)) = gmlbnd_ID_ ((xints ps),(xints ns))
tups cl@(Clause(ps,ns)) =
[(pts,nts)| pts <- (tuprange (bnd cl) (length ps)),
nts <- (tuprange (bnd cl) (length ns))]
sctups cl = filter (gmlsc_ID_ cl) (tups cl)
-- find minimal elts of those tupes satisfying the side condition
leq :: ([Int],[Int]) -> ([Int],[Int]) -> Bool
leq (p1, n1) (p2, n2) = (and (( map (\(x, y) -> x <= y) (( zip p1 p2) ++ (zip n1 n2)))))
geq :: ([Int],[Int]) -> ([Int],[Int]) -> Bool
geq (p1, n1) (p2, n2) = (and (( map (\(x, y) -> x >= y) (( zip p1 p2) ++ (zip n1 n2)))))
ftups :: [([Int], [Int])] -> [([Int], [Int])] -> [([Int], [Int])]
ftups [] bs = bs
ftups (a:as) bs
| any (\x -> geq x a) bs = ftups as bs
| otherwise = a:(filter (\x -> not (leq x a)) bs)
clmatch cl = map (gmlcnf_ID_ cl) (ftups (sctups cl) [] )
-- clmatch cl = map (gmlcnf_ID_ cl) (sctups cl)
in nub $ concatMap clmatch allcls
-- GML CNF: given clause & tuple output cnf
-- e.g. given clause (pos as,neg as), (pos rs,neg rs),
-- find all combinations whose sum is less than 0
gmlcnf_ID_ :: Clause L_ID_ -> ([Int],[Int]) -> [L_PID_]
gmlcnf_ID_ (Clause(pls,nls)) (prs,nrs) =
let (pinds,ninds) = (toinds prs,toinds nrs)
(spls,snls) = (striplst pls,striplst nls)
allinds = [(ps,ns) | ps <- (pwrset pinds), ns <- (pwrset ninds)]
cnfinds = filter (\(ps,ns) -> (sum$img ps prs)<(sum$img ns nrs)) allinds
getJ (ps,ns) = (img ps spls) ++ (img ns snls)
getnJ (ps,ns) = (img (pinds \\ ps) spls) ++ (img (ninds \\ ns) snls)
in map (\rs -> ndisj(getJ rs) \/ disj(getnJ rs)) cnfinds
-- GML side condition
gmlsc_ID_ :: Clause L_ID_ -> ([Int],[Int]) -> Bool
gmlsc_ID_ (Clause(pls,nls)) (pints,nints) =
let psum = sum $ zipbin (*) pints (map (\(_UNOP_ k _)->fromIntegral(k)) pls)
nsum = sum $ zipbin (*) nints (map (\(_UNOP_ k _)->1+fromIntegral(k)) nls)
in nsum >= 1 + psum
-- GML bound on integer magnitude
gmlbnd_ID_ :: ([Int],[Int]) -> Int
-- gmlbnd_ID_ _ = 1
gmlbnd_ID_ (kps,kns) =
let n = (length kps) + (length kns)
logint k x = ceiling $ logBase 2 (k + x)
logsum ls k = sum $ map (\x -> logint k (fromIntegral(x))) ls
in 12*n*(1+n) + 6*n*((logsum kps 1) + (logsum kns 2))
END_G_MATCHING
BEGIN_COPROD_MATCHING
instance BinaryMatch L_ID_ L_CID1_ L_CID2_ where
matchb (Clause (pls,nls)) =
let f1 = (disj $ striplst pls) \/ (ndisj $ striplst nls)
f2 = (disj $ striplst pls) \/ (ndisj $ striplst nls)
in [([f1],[f2])]
END_COPROD_MATCHING
BEGIN_COND_MATCHING
instance BinaryMatch L_ID_ L_CID1_ L_CID2_ where
matchb (Clause([],[])) = []
matchb (Clause(pls,nls)) =
let alpha = head $ (stripCondL_ID_ $ head (pls ++ nls))
xcls xs = partition (\(_BINOP_ a b) -> (a == alpha)) xs
((cpls,pls2),(cnls,nls2)) = (xcls $ onlyboxes pls,xcls $ onlyboxes nls)
fs = (disj $ striplst cpls) \/ (ndisj $ striplst cnls)
in ([],[fs]):(matchb (Clause(pls2,nls2)))
stripCondL_ID_ :: (Strip L_ID_ L_CID1_) => L_ID_ -> [L_CID1_]
stripCondL_ID_ xs = strip xs
END_COND_MATCHING
BEGIN_FUSE_MATCHING
instance BinaryMatch L_ID_ L_CID1_ L_CID2_ where
matchb (Clause (pls,nls)) =
let (posPi1,negPi1) = (concatMap stripFus1__ID_ pls,concatMap stripFus1__ID_ nls)
(posPi2,negPi2) = (concatMap stripFus2__ID_ pls,concatMap stripFus2__ID_ nls)
fromLits (ps,ns) = [(disj ps) \/ (ndisj ns)]
in [(fromLits (posPi1,negPi1),[]),([],fromLits (posPi2,negPi2))]
stripFus1__ID_ :: (Strip L_ID_ L_CID1_) => L_ID_ -> [L_CID1_]
stripFus1__ID_ xs = strip xs
stripFus2__ID_ :: (Strip L_ID_ L_CID2_) => L_ID_ -> [L_CID2_]
stripFus2__ID_ xs = strip xs
END_FUSE_MATCHING
END_MATCHINGS
// -------------------------------
// 'Provable' code for logics & ops
// -------------------------------
BEGIN_PROVABLES
BEGIN_UNARY_PROVABLE
provable phi = provable1 phi
END_UNARY_PROVABLE
BEGIN_BINARY_PROVABLE
provable phi = provable2 phi
END_BINARY_PROVABLE
END_PROVABLES
// --------------------
// Logic class instance
// --------------------
BEGIN_LOGIC
instance Logic L_N_ where
ff = F_N_; tt = T_N_;
x = Atom_N_ 1; y = Atom_N_ 2; z = Atom_N_ 3;
neg F_N_ = T_N_; neg T_N_ = F_N_; neg x = Neg_N_ x
x \/ y = Or_N_ x y
x /\ y = And_N_ x y
_ONLYBOX_
disj [] = F_N_; disj [a] = a; disj (a:as) = Or_N_ a (disj as)
ma (And_N_ phi psi) = (ma phi) `union` (ma psi)
ma (Or_N_ phi psi) = (ma phi) `union` (ma psi)
ma (Neg_N_ phi) = ma phi
ma T_N_ = []; ma F_N_ = []; ma (Atom_N_ x) = [Atom_N_ x]
ma x = [x]
eval (And_N_ phi psi) s = (eval phi s) && (eval psi s)
eval (Or_N_ phi psi) s = (eval phi s) || (eval psi s)
eval (Neg_N_ phi) s = not (eval phi s)
eval T_N_ s = True; eval F_N_ s = False
eval phi (Clause (pos, neg))
| elem phi neg = False
| elem phi pos = True
_PROVABLE_
END_LOGIC
BEGIN_ONLYBOXS
BEGIN_BASIC_ONLYBOX
onlybox (_BOXED_) = [_BOXED_]; onlybox _ = []
END_BASIC_ONLYBOX
BEGIN_COPROD_ONLYBOX
onlybox (_BOXED_) = [_BOXED_]; onlybox _ = []
END_COPROD_ONLYBOX
BEGIN_COND_ONLYBOX
onlybox (_BOXED_) = [_BOXED_]; onlybox _ = []
END_COND_ONLYBOX
BEGIN_FUSE_ONLYBOX
onlybox (Pi1__ID_ x) = [Pi1__ID_ x]; onlybox _ = []
onlybox (Pi2__ID_ x) = [Pi2__ID_ x]; onlybox _ = []
END_FUSE_ONLYBOX
END_ONLYBOXS
// --------------------
// Strip class instances
// --------------------
BEGIN_STRIPPERS
BEGIN_UNARY_STRIP
instance Strip _FROM_ _TO_ where
strip (_UNOP_ x) = [x]; strip _ = [];
END_UNARY_STRIP
BEGIN_COND_STRIP
instance Strip _FROM_ _TO1_ where
strip (_BINOP_ x _) = [x]; strip _ = [];
instance Strip _FROM_ _TO2_ where
strip (_BINOP_ _ y) = [y]; strip _ = [];
END_COND_STRIP
BEGIN_COPROD_STRIP
instance Strip _FROM_ _TO1_ where
strip (_BINOP_ x _) = [x]; strip _ = [];
instance Strip _FROM_ _TO2_ where
strip (_BINOP_ _ y) = [y]; strip _ = [];
END_COPROD_STRIP
BEGIN_FUSE_STRIP
instance Strip _FROM_ _TO1_ where
strip (_UNOP1_ x) = [x]; strip _ = [];
instance Strip _FROM_ _TO2_ where
strip (_UNOP2_ x) = [y]; strip _ = [];
END_FUSE_STRIP
END_STRIPPERS