het_col.tex revision 304d15b2ffa9376d78bddcfc63569824381714ab
\documentclass{entcs} \usepackage{entcsmacro}
\usepackage{graphicx}
\usepackage{mathpartir}
\usepackage{amsmath,amssymb}
\newcommand{\hearts}{\heartsuit}
\newcommand{\prems}{\mathit{prems}}
\newcommand{\eval}{\mathit{eval}}
\input{header}
\sloppy
% The following is enclosed to allow easy detection of differences in
% ascii coding.
% Upper-case A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
% Lower-case a b c d e f g h i j k l m n o p q r s t u v w x y z
% Digits 0 1 2 3 4 5 6 7 8 9
% Exclamation ! Double quote " Hash (number) #
% Dollar $ Percent % Ampersand &
% Acute accent ' Left paren ( Right paren )
% Asterisk * Plus + Comma ,
% Minus - Point . Solidus /
% Colon : Semicolon ; Less than <
% Equals =3D Greater than > Question mark ?
% At @ Left bracket [ Backslash \
% Right bracket ] Circumflex ^ Underscore _
% Grave accent ` Left brace { Vertical bar |
% Right brace } Tilde ~
% A couple of exemplary definitions:
%\newcommand{\Nat}{{\mathbb N}}
%\newcommand{\Real}{{\mathbb R}}
\newcommand{\COLOSS}{{\textrm CoLoSS}}
\def\lastname{Hausmann and Schr\"oder}
\begin{document}
\begin{frontmatter}
\title{Heterogenous modal logics within \COLOSS}
\author[DFKI]{Daniel Hausmann\thanksref{myemail}}
\author[DFKI,UBremen]{Lutz Schr\"oder\thanksref{coemail}}
\address[DFKI]{DFKI Bremen, SKS}
\address[UBremen]{Department of Mathematics and Computer Science, Universit\"at Bremen, Germany}
% \thanks[ALL]{Work forms part of DFG-project \emph{Generic Algorithms and Complexity
% Bounds in Coalgebraic Modal Logic} (SCHR 1118/5-1)}
\thanks[myemail]{Email: \href{mailto:Daniel.Hausmann@dfki.de} {\texttt{\normalshape Daniel.Hausmann@dfki.de}}}
\thanks[coemail]{Email: \href{mailto:Lutz.Schroeder@dfki.de} {\texttt{\normalshape Lutz.Schroeder@dfki.de}}}
\begin{abstract}
abstract hier, abstract da
\end{abstract}
\begin{keyword}
Coalgebraic modal logic, heterogenous modal logic, automated reasoning
\end{keyword}
\end{frontmatter}
\section{Introduction}\label{intro}
introbla
\section{Generic Sequent Calculi for Coalgebraic Modal Logic}
theorybla
\section{Generic and Heterogenous Sequent Calculi for Coalgebraic Modal Logic}
There are several reasonable definitions of what a heterogenous modal logic could be. For the remainder
of this paper we go with the following definition:
\begin{definition}
Given a set $\mathcal{P}$ of atoms, the set $Prop(\mathcal{F})$ of \emph{propositional formulas} over
a set $\mathcal{F}$ of other formulas is defined as follows ($p\in\mathcal{P}$, $\xi\in\mathcal{F}$):
\begin{quote}
$\phi,\psi::= p\mid \phi\wedge\psi\mid\neg\phi\mid \xi$
\end{quote}
Furthermore, given a modal similarity type $\Lambda$, the set $Mod^\Lambda(\mathcal{F})$ of \emph{modal formulas}
over a set $\mathcal{F}$ of other formulas is defined as follows (where $\hearts$ is a $n$-ary operator
from $\Lambda$ and $\psi_1,\ldots,\psi_n\in\mathcal{F}$):
\begin{quote}
$\phi::= \hearts(\psi_1,\dots,\psi_n)$
\end{quote}
\end{definition}
Using the previous definition which provides us with a notion of \emph{layers} of a formula,
we may now define heterogenous modal logics:
\begin{definition}
A \emph{heterogenous modal logic} consists of formulas that show a precisely defined constellation
of layers: Given a finite list $\mathcal{M}=[\Lambda_1,\ldots,\Lambda_n]$ of modal similarity
types, formulas $Het(\mathcal{M})=\phi^1$ of the according heterogenous modal logic are defined by circular induction:
\begin{quote}
$\phi^{(i \mod n)}::=Prop(Mod^{\Lambda_{(i\mod n)}}(\phi^{((i+1) \mod n)}).$
\end{quote}
\end{definition}
This definition divides a formula into distinguished \emph{modal layers} (which appear in the
order given by $\mathcal{M}$), with a
\emph{propositional layer} between every two modal layers.
\begin{remark}
Observe that this definition of heterogenous modal logics subsumes the case of modal logics
for composed functors (for given functors $F_1$ to $F_n$ (with associated modal logics)
of suiting arities, the composed modal logic is just the logic associated with
$F_1\circ\ldots\circ F_n$).
Use the above definition and set all (except the first) propositional layers to be the
identity.
\end{remark}
\begin{example}[Heterogenous Formulas]
Let $\mathcal{M}=\{\Lambda_1,\Lambda_2\}$ where $\Lambda_1=\{\Box_{KD}\}$ and
$\Lambda_2=\{\Box_{K}\}$. The formulas of the according heterogenous modal logic
then contain alternating appearences of the two modal operators $\Box_{KD}$ and
$\Box_{K}$, such as in the following examplary formulas:
\begin{quote}
$\phi=\Box_{KD}\Box_{K}\Box_{KD}\Box_{K}\top$\\
$\psi=(\Box_{KD} \Box_{K} ((\Box_{KD} \bot) \vee \top)))\wedge(\Box_{KD}\neg \Box_{K} \top)$
\end{quote}
\end{example}
\begin{definition}
A \emph{formula of level $i$} is a formula whose top-level modalities are all from $\Lambda_i$.
A \emph{heterogenous sequent} is a heterogenous list of formulas of possibly varying levels.
A \emph{heterogenous premise} is just a list of lists of heterogenous sequents.
\end{definition}
Typed sequent rules:
\begin{figure}[!h]
\begin{center}
\begin{tabular}{| c |}
\hline
\\[-5pt]
(\textsc {Linear})\inferrule{stripped of type a}
{\Gamma, formula of type a} \\[-5pt]
\\
\hline
\end{tabular}
\end{center}
\caption{The linear sequent rules}
\label{fig:linear}
\end{figure}
matching function, heterogenous sequent algorithm
\section{Implementation}
\section{Generic and Heterogenous Optimisation}
\section{Conclusion}
concludebla
\bibliographystyle{myabbrv}
\bibliography{coalgml}
\end{document}