example.tex revision 41cb631b545a1f2eb08393bc4a3c614fa531f39e
c797f343be2f3619bb1f5569753166ec49d27bdbChristian Maeder\documentclass{entcs} \usepackage{entcsmacro}
c797f343be2f3619bb1f5569753166ec49d27bdbChristian Maeder\usepackage{graphicx}
81d182b21020b815887e9057959228546cf61b6bChristian Maeder\usepackage{mathpartir}
10397bcc134edbcfbe3ae2c7ea4c6080036aae22Christian Maeder\usepackage{amsmath,amssymb}
97018cf5fa25b494adffd7e9b4e87320dae6bf47Christian Maeder\newcommand{\hearts}{\heartsuit}
c797f343be2f3619bb1f5569753166ec49d27bdbChristian Maeder\newcommand{\prems}{\mathit{prems}}
3f69b6948966979163bdfe8331c38833d5d90ecdChristian Maeder\newcommand{\eval}{\mathit{eval}}
c797f343be2f3619bb1f5569753166ec49d27bdbChristian Maeder\input{header}
f3a94a197960e548ecd6520bb768cb0d547457bbChristian Maeder% The following is enclosed to allow easy detection of differences in
f3a94a197960e548ecd6520bb768cb0d547457bbChristian Maeder% ascii coding.
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder% Upper-case A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder% Lower-case a b c d e f g h i j k l m n o p q r s t u v w x y z
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder% Digits 0 1 2 3 4 5 6 7 8 9
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder% Exclamation ! Double quote " Hash (number) #
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder% Dollar $ Percent % Ampersand &
23a00c966f2aa8da525d7a7c51933c99964426c0Christian Maeder% Acute accent ' Left paren ( Right paren )
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder% Asterisk * Plus + Comma ,
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder% Minus - Point . Solidus /
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder% Colon : Semicolon ; Less than <
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder% Equals =3D Greater than > Question mark ?
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder% At @ Left bracket [ Backslash \
10397bcc134edbcfbe3ae2c7ea4c6080036aae22Christian Maeder% Right bracket ] Circumflex ^ Underscore _
b645cf3dc1e449038ed291bbd11fcc6e02b2fc7fChristian Maeder% Grave accent ` Left brace { Vertical bar |
04dada28736b4a237745e92063d8bdd49a362debChristian Maeder% Right brace } Tilde ~
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder% A couple of exemplary definitions:
ad270004874ce1d0697fb30d7309f180553bb315Christian Maeder%\newcommand{\Nat}{{\mathbb N}}
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder%\newcommand{\Real}{{\mathbb R}}
89054b2b95a3f92e78324dc852f3d34704e2ca49Christian Maeder\newcommand{\COLOSS}{{\textrm CoLoSS}}
b984ff0ba75221f64451c1e69b3977967d4e99a1Christian Maeder\def\lastname{Hausmann and Schr\"oder}
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder\begin{document}
8b9fda012e5ee53b7b2320c0638896a0ff6e99f3Christian Maeder\begin{frontmatter}
8b9fda012e5ee53b7b2320c0638896a0ff6e99f3Christian Maeder \title{Optimizing Conditional Logic Reasoning within \COLOSS}
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder \author[DFKI]{Daniel Hausmann\thanksref{myemail}}
8b9fda012e5ee53b7b2320c0638896a0ff6e99f3Christian Maeder \author[DFKI,UBremen]{Lutz Schr\"oder\thanksref{coemail}}
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder \address[DFKI]{DFKI Bremen, SKS}
b190f5c7cf3ddda73724efe5ce82b9585ed76be1Christian Maeder \address[UBremen]{Department of Mathematics and Computer Science, Universit\"at Bremen, Germany}
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder% \thanks[ALL]{Work forms part of DFG-project \emph{Generic Algorithms and Complexity
04dada28736b4a237745e92063d8bdd49a362debChristian Maeder% Bounds in Coalgebraic Modal Logic} (SCHR 1118/5-1)}
5a13581acc5a76d392c1dec01657bb3efd4dcf2dChristian Maeder \thanks[myemail]{Email: \href{mailto:Daniel.Hausmann@dfki.de} {\texttt{\normalshape Daniel.Hausmann@dfki.de}}}
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder \thanks[coemail]{Email: \href{mailto:Lutz.Schroeder@dfki.de} {\texttt{\normalshape Lutz.Schroeder@dfki.de}}}
4ef2a978e66e2246ff0b7f00c77deb7aabb28b8eChristian Maeder\begin{abstract}
42c01284bba8d7c8d995c8dfb96ace57d28ed1bcTill Mossakowski The generic modal reasoner CoLoSS covers a wide variety of logics
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder ranging from graded and probabilistic modal logic to coalition logic
b190f5c7cf3ddda73724efe5ce82b9585ed76be1Christian Maeder and conditional logics, being based on a broadly applicable
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder coalgebraic semantics and an ensuing general treatment of modal
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder sequent and tableau calculi. Here, we present research into
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder optimisation of the reasoning strategies employed in
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder CoLoSS. Specifically, we discuss strategies of memoisation and
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder dynamic programming that are based on the observation that short
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder sequents play a central role in many of the logics under
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder study. These optimisations seem to be particularly useful for the
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder case of conditional logics, for some of which dynamic programming
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder even improves the theoretical complexity of the algorithm. These
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder strategies have been implemented in CoLoSS; we give a detailed
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder comparison of the different heuristics, observing that in the
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder targeted domain of conditional logics, a substantial speed-up can be
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder\end{abstract}
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maeder\begin{keyword}
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder Coalgebraic modal logic, conditional logic, automated reasoning,
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder optimisation, heuristics, memoizing, dynamic programming
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder\end{frontmatter}
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder\section{Introduction}\label{intro}
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian MaederIn recent decades, modal logic has seen a development towards semantic
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maederheterogeneity, witnessed by an emergence of numerous logics that,
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maederwhile still of manifestly modal character, are not amenable to
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maederstandard Kripke semantics. Examples include probabilistic modal
f94e26f892cf0fe2aa54252ec98920aed3a5c5ecChristian Maederlogic~\cite{FaginHalpern94}, coalition logic~\cite{Pauly02}, and
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederconditional logic~\cite{Chellas80}, to name just a few. The move
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maederbeyond Kripke semantics, mirrored on the syntactical side by the
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederfailure of normality, entails additional challenges for tableau and
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedersequent systems, as the correspondence between tableaus and models
f4741f6b7da52b5417899c8fcbe4349b920b006eChristian Maederbecomes looser, and in particular demands created by modal formulas
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maedercan no longer be discharged by the creation of single successor nodes.
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian MaederThis problem is tackled on the theoretical side by introducing the
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedersemantic framework of coalgebraic modal
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maederlogic~\cite{Pattinson03,Schroder05}, which covers all logics mentioned
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maederabove and many more. It turns out that coalgebraic modal logic does
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederallow the design of generic reasoning algorithms, including a generic
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedertableau method originating from~\cite{SchroderPattinson09}; this
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedergeneric method may in fact be separated from the semantics and
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maederdeveloped purely syntactically, as carried out
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maederin~\cite{PattinsonSchroder08b,PattinsonSchroder09a}.
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian MaederGeneric tableau algorithms for coalgebraic modal logics, in particular
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederthe algorithm described in~\cite{SchroderPattinson09}, have been
27912d626bf179b82fcb337077e5cd9653bb71cfChristian Maederimplemented in the reasoning tool
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder\COLOSS~\cite{CalinEA09}\footnote{available under
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder \url{http://www.informatik.uni-bremen.de/cofi/CoLoSS/}}. As
462ec4b2fa3e0e788eb60dcb4aebc518298f342cChristian Maederindicated above, it is a necessary feature of the generic tableau
f4741f6b7da52b5417899c8fcbe4349b920b006eChristian Maedersystems that they potentially generate multiple successor nodes for a
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maedergiven modal demand, so that in addition to the typical depth problem,
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maederproof search faces a rather noticeable problem of breadth. The search
27912d626bf179b82fcb337077e5cd9653bb71cfChristian Maederfor optimisation strategies to increase the efficiency of reasoning
27912d626bf179b82fcb337077e5cd9653bb71cfChristian Maederthus becomes all the more urgent. Here we present one such strategy,
27912d626bf179b82fcb337077e5cd9653bb71cfChristian Maederwhich is generally applicable, but particularly efficient in reducing
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maederboth depth and branching for the class of conditional logics. We
04dada28736b4a237745e92063d8bdd49a362debChristian Maederexploit a notable feature of this class, namely that many of the
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederrelevant rules rely rather heavily on premises stating equivalence
15bb922b665fcd44c6230a1202785d0c7890e90cChristian Maederbetween formulas; thus, conditional logics are a good candidate for
42c01284bba8d7c8d995c8dfb96ace57d28ed1bcTill Mossakowskimemoising strategies, applied judiciously to short sequents. We
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederdescribe the implementation of memoising and dynamic programming
04dada28736b4a237745e92063d8bdd49a362debChristian Maederstrategies within \COLOSS, and discuss the outcome of various
76fa667489c5e0868ac68de9f0253ac10f73d0b5Christian Maedercomparative experiments.
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder\section{Generic Sequent Calculi for Coalgebraic Modal Logic}
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian MaederCoalgebraic modal logic, originally introduced as a specification
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederlanguage for coalgebras, seen as generic reactive
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedersystems~\cite{Pattinson03}, has since evolved into a generic framework
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maederfor modal logic beyond Kripke semantics~\cite{CirsteaEA09}. The basic
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederidea is to encapsulate the branching type of the systems relevant for
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederthe semantics of a particular modal logic, say probabilistic or
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedergame-theoretic branching, in the choice of a set functor, the
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedersignature functor (e.g.\ the distribution functor and the games
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederfunctor in the mentioned examples), and to capture the semantics of
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maedermodal operators in terms of so-called predicate liftings. For the
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederpurposes of the present work, details of the semantics are less
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederrelevant than proof-theoretic aspects, which we shall recall
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederpresently. The range of logics covered by the coalgebraic approach is
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederextremely broad, including, besides standard Kripke and neighbourhood
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedersemantics, e.g.\ graded modal logic~\cite{Fine72}, probabilistic modal
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederlogic~\cite{FaginHalpern94}, coalition logic~\cite{Pauly02}, various
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederconditional logics equipped with selection function
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedersemantics~\cite{Chellas80}, and many more.
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian MaederSyntactically, logics are parametrised by the choice of a \emph{modal
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder similarity type} $\Lambda$, i.e.\ a set of modal operators with
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederassociated finite arities. This choice determines the set of formulas
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder$\phi,\psi$ via the grammar
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder\begin{equation*}
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder \phi, \psi ::= p \mid
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder \phi \land \psi \mid \lnot \phi \mid \hearts(\phi_1, \dots, \phi_n)
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder\end{equation*}
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederwhere $\hearts$ is an $n$-ary operator in $\Lambda$. Examples are
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder$\Lambda=\{L_p\mid p\in[0,1]\cap\mathbb{Q}\}$, the unary operators
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder$L_p$ of probabilistic modal logic read `with probability at least
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder$p$'; $\Lambda=\{\gldiamond{k}\mid k\in\Nat\}$, the operators
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder$\gldiamond{k}$ of graded modal logic read `in more than $k$
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maedersuccessors'; $\Lambda=\{[C]\mid C\subseteq N\}$, the operators $[C]$
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederof coalition logic read `coalition $C$ (a subset of the set $N$ of
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederagents) can jointly enforce that'; and, for our main example here,
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder$\Lambda=\{\Rightarrow\}$, the \emph{binary} modal operator
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder$\Rightarrow$ of conditional logic read e.g.\ `if \dots then normally
975642b989852fc24119c59cf40bc1af653608ffChristian MaederCoalgebraic modal logic was originally limited to so-called
ad187062b0009820118c1b773a232e29b879a2faChristian Maeder\emph{rank-$1$ logics} axiomatised by formulas with nesting depth of
ad187062b0009820118c1b773a232e29b879a2faChristian Maedermodal operators uniformly equal to $1$~\cite{Schroder05}. It has since
ad187062b0009820118c1b773a232e29b879a2faChristian Maederbeen extended to the more general non-iterative
ad187062b0009820118c1b773a232e29b879a2faChristian Maederlogics~\cite{SchroderPattinson08d} and to some degree to iterative
ad187062b0009820118c1b773a232e29b879a2faChristian Maederlogics, axiomatised by formulas with nested
ad187062b0009820118c1b773a232e29b879a2faChristian Maedermodalities~\cite{SchroderPattinson08PHQ}. The examples considered here
ad187062b0009820118c1b773a232e29b879a2faChristian Maederall happen to be rank-$1$, so we focus on this case. In the rank-$1$
ad187062b0009820118c1b773a232e29b879a2faChristian Maedersetting, it has been shown~\cite{Schroder05} that all logics can be
ad187062b0009820118c1b773a232e29b879a2faChristian Maederaxiomatised by \emph{one-step rules} $\phi/\psi$, where $\phi$ is
ad187062b0009820118c1b773a232e29b879a2faChristian Maederpurely propositional and $\psi$ is a clause over formulas of the form
ad187062b0009820118c1b773a232e29b879a2faChristian Maeder$\hearts(a_1,\dots,a_n)$, where the $a_i$ are propositional
ad187062b0009820118c1b773a232e29b879a2faChristian Maedervariables. In the context of a sequent calculus, this takes the
b984ff0ba75221f64451c1e69b3977967d4e99a1Christian Maederfollowing form~\cite{PattinsonSchroder08b}.
962d5c684e2b86d1f9c556c096b426e10cc74026Christian Maeder\begin{definition}
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder If $S$ is a set (of formulas or variables) then $\Lambda(S)$ denotes
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder the set $\lbrace \hearts(s_1, \dots, s_n) \mid \hearts \in \Lambda
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maeder \mbox{ is $n$-ary, } s_1, \dots, s_n \in S \rbrace$ of formulas
962d5c684e2b86d1f9c556c096b426e10cc74026Christian Maeder comprising exactly one application of a modality to elements of
962d5c684e2b86d1f9c556c096b426e10cc74026Christian Maeder $S$. An \emph{$S$-sequent}, or just a \emph{sequent} in case
962d5c684e2b86d1f9c556c096b426e10cc74026Christian Maeder $S=(\Lambda)$, is a finite subset of $S \cup \lbrace \neg A \mid A
962d5c684e2b86d1f9c556c096b426e10cc74026Christian Maeder \in S \rbrace$. Then, a \emph{one-step rule}
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder $\Gamma_1,\dots,\Gamma_n/\Gamma_0$ over a set $V$ of variables
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder consists of $V$-sequents $\Gamma_1,\dots,\Gamma_n$, the
b984ff0ba75221f64451c1e69b3977967d4e99a1Christian Maeder \emph{premises}, and a $\Lambda(S)$-sequent $\Gamma_0$, the
ee9eddfa6953868fd6fbaff0d9ff68675a13675aChristian Maeder \emph{conclusion}. A \emph{goal} is a set of sequents, typically
ee9eddfa6953868fd6fbaff0d9ff68675a13675aChristian Maeder arising as the set of instantiated premises of a rule application.
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder\end{definition}
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder\noindent A given set of one-step rules then induces an instantiation
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maederof the \emph{generic sequent calculus}~\cite{PattinsonSchroder08b}
27912d626bf179b82fcb337077e5cd9653bb71cfChristian Maederwhich is given by a set of rules $\mathcal{R}_{sc}$ consisting of the
27912d626bf179b82fcb337077e5cd9653bb71cfChristian Maederfinishing and the branching rules $\mathcal{R}^b_{sc}$ (i.e.\ rules
ad187062b0009820118c1b773a232e29b879a2faChristian Maederwith no premise or more than one premise), the linear rules
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maeder$\mathcal{R}^l_{sc}$ (i.e.\ rules with exactly one premise) and the
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maedermodal rules $\mathcal R^m_{sc}$, i.e.\ the given one-step rules. The
2ac1742771a267119f1d839054b5e45d0a468085Christian Maederfinishing and the branching rules are presented in
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian MaederFigure~\ref{fig:branching} (where $\top=\neg\bot$ and $p$ is an atom),
6cca02cb6a5ae882d887a879f8b7a71941c3715cChristian Maederthe linear rules are shown in Figure~\ref{fig:linear}. So far, all
ee9eddfa6953868fd6fbaff0d9ff68675a13675aChristian Maederthese rules are purely propositional. As an example for a set of modal
5a13581acc5a76d392c1dec01657bb3efd4dcf2dChristian Maederone-step rules, consider the modal rules $\mathcal R^m_{sc}$ of the
e95bbf384f5cbcb7eb23286d5f15dffbd471db17Christian Maederstandard modal logic \textbf{K} as given by Figure~\ref{fig:modalK}.
4fb19f237193a3bd6778f8aee3b6dd8da5856665Christian Maeder\begin{figure}[!h]
c797f343be2f3619bb1f5569753166ec49d27bdbChristian Maeder \begin{center}
15bb922b665fcd44c6230a1202785d0c7890e90cChristian Maeder \begin{tabular}{| c c c |}
42c01284bba8d7c8d995c8dfb96ace57d28ed1bcTill Mossakowski (\textsc {$\neg$F}) \inferrule{ }{\Gamma, \neg\bot} &
the \emph{provability problem}, i.e.\ to decide whether a given
%and PSPACE-tractable. Then Algorithm~\ref{alg:seq} is sound and complete w.r.t. provability
%We just note, that Algorithm~\ref{alg:seq} is an equivalent implementation of the algorithm proposed
%in~\cite{SchroderPattinson09}. For more details, refer to ~\cite{SchroderPattinson09}, Theorem 6.13.
(\textsc {\textbf{CKCEM}})\inferrule{A_0 = \ldots = A_n \\ B_0,\ldots, B_j,\neg B_{j+1},\ldots,\neg B_n}
conditional antecedents of modal nesting depth at most $n$ (i.e.
$\prems(n)=\bigcup_{j=1..n}^{} p_j$).
\hfill ($\bigwedge{}_{i,j\in\{1..n\}}{\eval(A_i=A_j)=\top}$)\\
Step 1: Take a formula $\phi$ as input. Set $i=0$, $\mathcal{K}_0=\emptyset$, $\eval_0=\emptyset$.\\
with Step 3, else set $\mathcal{K}=\mathcal{K}_{i-1}, \eval=\eval_{i-1}$ and continue with Step 4.\\
also try to show equivalences between any two conditional antecedents (e.g. $(p_0,
Consider the formula $\phi=(p_0\Rightarrow p_2)\Rightarrow ((p_0\Rightarrow p_1)\Rightarrow p_3)$. Then the path to
$(p_0\Rightarrow p_2)$ is $\{1\}$, whereas the path to $(p_0\Rightarrow p_1)$ is $\{01\}$. The paths
Let $A$ and $B$ be two conditional antecedents. $A$ and $B$ are called \emph{connected (in $\phi$)} if
at least one path to $A$ is also a path to $B$ (and hence vice-versa). If no path to $A$ is a path to $B$,
(since antecedents may indeed be connected and still it is possible that they never appear together in an application
of the modal rule - this is the case whenever two preceeding antecedents are not logically equivalent).
Step 1: Take a formula $\phi$ as input. Set $i=0$, $\mathcal{K}_0=\emptyset$, $\eval_0=\emptyset$.\\
with Step 3, else set $\mathcal{K}=\mathcal{K}_{i-1}, \eval=\eval_{i-1}$ and continue with Step 4.\\
the tested benchmarking formulae can be found at \url{http://www.informatik.uni-bremen.de/cofi/CoLoSS/}}).
complexity w.r.t. different parts of the algorithms and thus exhibiting specific
\item The formula \verb|bloat(|$i$\verb|)| is a full binary tree of depth $i$ (containing $2^i$ pairwise logically
\verb|bloat(|$i$\verb|)| = $($\verb|bloat(|$i-1$\verb|)|$)\Rightarrow($\verb|bloat(|$i-1$\verb|)|)\\
Formulae from this class should show the problematic performance of Algorithm~\ref{alg:preprove} whenever
a formula contains many modal antecedents which appear at different depths. A comparison of the different
algorithms w.r.t. formulae \verb|bloat(|$i$\verb|)| is depicted in Figure~\ref{fig:benchBloat}.
Since Algorithm~\ref{alg:preprove} does not check whether pairs of modal antecedents are independent or connected,
it performs considerably worse than Algorithm~\ref{alg:optPreprove} which only attempts to prove the logical
equivalence of formulae which are not independent. Algorithm~\ref{alg:seq} has the best performance in this
extreme case, as it only has to consider pairs of modal antecedents which actually appear during the course
\item The formula \verb|conjunct(|$i$\verb|)| is just an $i$-fold conjunction of a specific formula $A$:
$A=(((p_1\vee p_0)\Rightarrow p_2)\vee((p_0\vee p_1)\Rightarrow p_2))\vee\neg(((p_0\vee p_1)\Rightarrow p_2)\vee((p_1\vee p_0)\Rightarrow p_2))$)
This class consists of formulae which contain logically (but not sytactically) equivalent antecedents.
As $i$ increases, so does the amount of appearances of identical modal antecedents in different positions
of the considered formula. A comparison of the different algorithms w.r.t. formulae \verb|conjunct(|$i$\verb|)| is depicted in
Figure~\ref{fig:benchConjunct}. It is obvious that the optimized algorithms perform considerably better than the unoptimized
Algorithm~\ref{alg:seq}. The reason for this is, that Algorithm~\ref{alg:seq} repeatedly proves equivalences between the same
pairs of modal antecedents. The optimized algorithms on the other hand are equipped with knowledge about the modal antecedents,
so that these equivalences have to be proved only once. However, even the runtime of the optimized algorithms is exponential in $i$,
due to the exponentially increasing complexity of the underlying propositional formula. Note that the use of propositional taulogies (such as
$A \leftrightarrow (A\wedge A) $ in this case) would help to greatly reduce the computing time for \verb|conjunct(|$i$\verb|)|.
Optimisation of propositional reasoning is not the scope of this paper though, thus we devise the following examplary class of formulae
a (w.r.t the considered modal logic) sound instance of the generic rule which
Step 1: Take a formula $\phi$ as input. Set $i=0$, $\mathcal{K}_0=\emptyset$, $\eval_0=\emptyset$.\\
with Step 3, else set $\mathcal{K}=\mathcal{K}_{i-1}, \eval=\eval_{i-1}$ and continue with Step 4.\\
where the employed ruleset has to be extended by the generic modified rule given by Figure~\ref{fig:modModalOpt}.
(\textsc {\textbf{Opt}$^m$}) \inferrule{ \eval(S_1)=\top \\ \ldots \\ \eval(S_n)=\top \\ \mathcal{S} }
the generic algorithm to the case of modal logics which are monotone w.r.t. their
considered logic (i.e. the case of plain monotone modal logic), all the