GenericSequent.hs revision 75e41c8fd4236646ea2b5712c0489edf33958103
{-# OPTIONS -fglasgow-exts #-}
module GenericSequent where
import ModalLogic
import CombLogic
import Data.List
-- | Generate all possible clauses out of a list of atoms
allClauses :: [a] -> [Clause a]
allClauses x = case x of
h:t -> let addPositive c (Implies n p) = Implies n (c:p)
addNegative c (Implies n p) = Implies (c:n) p
in map (addPositive h) (allClauses t) ++
map (addNegative h) (allClauses t)
_ -> [Implies [] []]
-- | Extract the modal atoms from a formula
getMA :: Eq a => Boole a -> [Boole a]
getMA x = case x of
And phi psi -> (getMA phi) `union` (getMA psi)
Not phi -> getMA phi
At phi -> [At phi]
_ -> []
-- | Substitution of modal atoms within a "Boole" expression
subst :: Eq a => Boole a -> Clause (Boole a) -> Boole a
subst x s@(Implies neg pos) =
case x of
And phi psi -> And (subst phi s) (subst psi s)
Not phi -> Not (subst phi s)
T -> T
F -> F
_ -> if (elem x neg) then F
else if (elem x pos) then T
else error "GenericSequent.subst"
-- | Evaluation of an instantiated "Boole" expression
eval :: Boole a -> Bool
eval x = case x of
And phi psi -> (eval phi) && (eval psi)
Not phi -> not (eval phi)
T -> True
F -> False
_ -> error "GenericSequent.eval"
-- | DNF: disjunctive normal form of a Boole expression
dnf :: (Eq a) => Boole a -> [Clause (Boole a)]
dnf phi = filter (\x -> eval (subst phi x)) (allClauses (getMA phi))
-- | CNF: conjunctive normal form of a Boole expression
cnf :: (Eq a) => Boole a -> [Clause (Boole a)]
cnf phi = map (\(Implies x y) -> Implies y x) (dnf (Not phi))
-- | Provability function
--provable :: Logic a b => Boole (a c) -> Bool
--provable phi = all (\c -> any (all provable) (map fst (match c))) (cnf phi)
unwrapK = \(K x) -> x
unwrapKD = \(KD x) -> x