StatAna.hs revision e9458b1a7a19a63aa4c179f9ab20f4d50681c168
{- |
Module : ./Fpl/StatAna.hs
Description : static basic analysis for FPL
Copyright : (c) Christian Maeder, DFKI GmbH 2011
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
basic static analysis for FPL
-}
module Fpl.StatAna
( basicFplAnalysis
, minFplTerm
, simplifyTermExt
) where
import Fpl.As
import Fpl.Sign
import CASL.Sign
import CASL.MixfixParser
import CASL.StaticAna
import CASL.AS_Basic_CASL
import CASL.ShowMixfix
import CASL.Overload
import CASL.Quantification
import CASL.SimplifySen
import Common.AS_Annotation
import Common.DocUtils
import Common.ExtSign
import Common.GlobalAnnotations
import Common.Id
import Common.Lib.State
import Common.Result
import Common.Utils
import qualified Common.Lib.MapSet as MapSet
import Control.Monad
import qualified Data.Set as Set
import qualified Data.Map as Map
import Data.Maybe
basicFplAnalysis
:: (FplBasicSpec, FplSign, GlobalAnnos)
-> Result (FplBasicSpec, ExtSign FplSign Symbol, [Named FplForm])
basicFplAnalysis (b, s, ga) =
fmap (\ (r, ExtSign t syms, sens) ->
(r, ExtSign (delBuiltins t) syms, sens))
$ basicAnalysis minFplTerm anaFplExt (const return) mixFplAna
(b, addBuiltins s, ga)
mixFplAna :: Mix FplExt () TermExt SignExt
mixFplAna = emptyMix
{ getBaseIds = fplIds
, putParen = mapTermExt
, mixResolve = resolveTermExt
}
fplIds :: FplExt -> IdSets
fplIds fe = case fe of
FplSortItems sis _ -> unite $ map (fplSortIds . item) sis
FplOpItems ois _ -> unite $ map (fplOpIds . item) ois
fplSortIds :: FplSortItem -> IdSets
fplSortIds si = case si of
FreeType dt -> (ids_DATATYPE_DECL dt, Set.empty)
CaslSortItem _ -> emptyIdSets
fplOpIds :: FplOpItem -> IdSets
fplOpIds oi = let e = Set.empty in case oi of
FunOp (FunDef i (Op_head _ vs _ _) _ _) -> let s = Set.singleton i in
(if null vs then (s, e) else (e, s), e)
CaslOpItem o -> (ids_OP_ITEM o, e)
-- | put parens around terms
mapTermExt :: TermExt -> TermExt
mapTermExt te = let rec = mapTerm mapTermExt in case te of
FixDef fd -> FixDef $ mapFunDef fd
Case o l r -> Case (rec o)
(map (\ (p, t) -> (rec p, rec t)) l) r
Let fd t r -> Let (mapFunDef fd) (rec t) r
IfThenElse i t e r -> IfThenElse (rec i) (rec t) (rec e) r
EqTerm t e r -> EqTerm (rec t) (rec e) r
BoolTerm t -> BoolTerm (rec t)
-- | put parens around final term
mapFunDef :: FunDef -> FunDef
mapFunDef (FunDef o h at r) =
FunDef o h (fmap (mapTerm mapTermExt) at) r
{- | The is the plugin function for the mixfix analysis. Due to patterns there
may be unknown simple identifiers that are turned to constants and later by
the overload resolution to variables. Obviously, such variables cannot be fed
into the mixfix analysis like all other known variables. -}
resolveTermExt :: MixResolve TermExt
resolveTermExt ga ids te =
let recAux = resolveMixTrm mapTermExt resolveTermExt ga
rec = recAux ids
in case te of
FixDef fd -> fmap FixDef $ resolveFunDef ga ids fd
Case o l r -> do
ro <- rec o
-- CHECK: consider pattern variables
rl <- mapM (\ (p, t) -> liftM2 (,)
(rec p)
$ rec t) l
return $ Case ro rl r
Let fd@(FunDef o _ _ _) t r -> do
rfd <- resolveFunDef ga ids fd
rt <- recAux (addIdToRules o ids) t
return $ Let rfd rt r
IfThenElse i t e r -> do
ri <- rec i
rt <- rec t
re <- rec e
return $ IfThenElse ri rt re r
EqTerm t e r -> do
rt <- rec t
re <- rec e
return $ EqTerm rt re r
BoolTerm t -> fmap BoolTerm $ rec t
-- | resolve overloading in rhs and assume function to be in the signature
resolveFunDef :: MixResolve FunDef
resolveFunDef ga ids (FunDef o h@(Op_head _ vs _ _) at r) = do
nt <- resolveMixTrm mapTermExt resolveTermExt ga
(addIdToRules o $ extendRules (varDeclTokens vs) ids) $ item at
return $ FunDef o h at { item = nt } r
-- | get constructors for input sort
getConstrs :: FplSign -> SORT -> OpMap
getConstrs sign resSort = MapSet.mapSet
(Set.filter $ leqSort sign resSort . opRes) $ constr $ extendedInfo sign
{- | This functions tries to recognize variables in case-patterns (application
terms) after overload resolution. A current limitation is that a unique sort
is needed as input that is taken from the term between @case@ and @of@. -}
resolvePattern :: FplSign -> (SORT, FplTerm) -> Result ([VAR_DECL], FplTerm)
resolvePattern sign (resSort, term) =
let err msg = fail $ msg ++ " " ++ showDoc term "" in
case term of
Application opSym args p ->
let ide@(Id ts _ _) = opSymbName opSym in
case filter ( \ oTy -> length (opArgs oTy) == length args
&& case opSym of
Qual_op_name _ symTy _ ->
leqF sign oTy $ toOpType symTy
_ -> True
)
$ Set.toList $ MapSet.lookup ide $ getConstrs sign resSort of
[] -> if null args && isSimpleId ide then
let v = Var_decl [head ts] resSort $ posOfId ide
in return ([v], toQualVar v)
else err "unresolved pattern"
[OpType k as r] -> do
l <- mapM (resolvePattern sign) $ zip as args
return (concatMap fst l,
Application (Qual_op_name ide (Op_type k as r p) p) (map snd l) p)
_ -> err "ambiguous pattern"
Qual_var v s r -> if leqSort sign s resSort then
return ([Var_decl [v] s r], term)
else err "wrong type of pattern variable"
Sorted_term t s r -> if leqSort sign s resSort then do
(vs, nt) <- resolvePattern sign (s, t)
return (vs, Sorted_term nt s r)
else err "wrong typed pattern"
_ -> err "unexpected pattern"
addFunToSign :: FunDef -> State FplSign ()
addFunToSign (FunDef o h _ _) =
maybe (return ()) (\ ty -> addOp (emptyAnno o) (toOpType ty) o)
$ headToType h
letVars :: FunDef -> [VAR_DECL]
letVars (FunDef o (Op_head _ vs ms _) at ps) =
[ Var_decl [idToSimpleId o] (sortOfTerm $ item at) ps
| isSimpleId o && isNothing ms && null vs ]
addFunVar :: FunDef -> State FplSign ()
addFunVar = mapM_ addVars . letVars
{- | perform overload resolution after mixfix analysis. The type of patterns
is deduced from the top term. Overlapping or exhaustive patterns are not
recognized yet. -}
minFplTerm :: Min TermExt SignExt
minFplTerm sig te = case te of
FixDef fd -> fmap FixDef $ minFunDef sig fd
Case o l r -> do
ro <- oneExpTerm minFplTerm sig o
-- assume unique type of top-level term for now
let s = sortOfTerm ro
rl <- mapM (\ (p, t) -> do
(vs, np) <- resolvePattern sig (s, p)
appendDiags $ checkUniqueness . map fst $ flatVAR_DECLs vs
let newSign = execState (mapM_ addVars vs) sig
rt <- minExpTerm minFplTerm newSign t
return (np, rt)) l
let (ps, tts) = unzip rl
cSupers tl = case tl of
[] -> True
hd : rt -> all (haveCommonSupersorts True sig
(sortOfTerm hd) . sortOfTerm) rt && cSupers rt
nts <- isUnambiguous "" (globAnnos sig) (map snd l)
(map (filter cSupers . combine) $ combine tts) r
let nl = zip ps nts
let (hd, rt) = Set.deleteFindMin sl
in Set.unions . map (Set.fromList . minimalSupers sig hd)
. Set.toList $ Set.insert hd $ minSort rt
mSort = minSort . Set.fromList $ map sortOfTerm nts
case Set.toList mSort of
[tSort] -> do
fl <- mapM (\ (p, t) -> do
let pvs = freeTermVars sig p
tvs = freeTermVars sig t
unused = Set.difference pvs tvs
unless (Set.null unused) $
appendDiags $ map (mkDiag Warning "unused pattern variables")
$ Set.toList unused
return (p, mkSorted sig t tSort r)) nl
return $ Case ro fl r
sl -> mkError ("no common supersort for case terms: " ++ show sl) r
Let fd t r -> do
let newSign = execState (addFunToSign fd) sig
rfd <- minFunDef newSign fd
let sign2 = execState (addFunVar rfd) newSign
rt <- oneExpTerm minFplTerm sign2 t
return $ Let rfd rt r
IfThenElse i t e r -> do
ri <- oneExpTerm minFplTerm sig $ Sorted_term i boolSort r
Equation rt Strong re _ <-
minExpFORMULAeq minFplTerm sig (`Equation` Strong) t e r
return $ IfThenElse ri rt re r
EqTerm t e r -> do
Equation rt Strong re _ <-
minExpFORMULAeq minFplTerm sig (`Equation` Strong) t e r
return $ EqTerm rt re r
BoolTerm t -> fmap BoolTerm $ oneExpTerm minFplTerm sig t
-- | type check rhs and assume function to be in the signature
minFunDef :: Sign TermExt SignExt -> FunDef -> Result FunDef
minFunDef sig fd@(FunDef o h@(Op_head _ vs ms _) at r) = do
let newSign = execState (mapM_ addVars vs >> addFunToSign fd) sig
varSign = execState (mapM_ addVars vs) $ emptySign emptyFplSign
t = item at
nt <- oneExpTerm minFplTerm newSign $ maybe t (\ s -> Sorted_term t s r) ms
appendDiags $ warnUnusedVars " function " varSign $ freeTermVars newSign nt
return $ FunDef o h at { item = nt } r
getDDSorts :: [Annoted FplSortItem] -> [SORT]
getDDSorts = foldl (\ l si -> case item si of
FreeType (Datatype_decl s _ _) -> s : l
CaslSortItem _ -> l) []
anaFplExt :: Ana FplExt FplExt () TermExt SignExt
anaFplExt mix fe = case fe of
FplSortItems ais r -> do
mapM_ (\ s -> addSort NonEmptySorts (emptyAnno s) s)
$ getDDSorts ais
ns <- mapAnM (anaFplSortItem mix) ais
closeSubsortRel
return $ FplSortItems ns r
FplOpItems ais r -> do
ns <- mapAnM (anaFplOpItem mix) ais
return $ FplOpItems ns r
anaFplSortItem :: Ana FplSortItem FplExt () TermExt SignExt
anaFplSortItem mix si = case si of
FreeType dt@(Datatype_decl s aalts _) -> do
ana_DATATYPE_DECL Free dt
sign <- get
let cm = getConstrs sign s
updateExtInfo $ \ cs -> foldM
(\ e aa -> let a = item aa in if isConsAlt a then do
let (c, ty, _) = getConsType s a
unless (MapSet.null cm)
$ if Set.member (mkPartial ty)
$ makePartial $ MapSet.lookup c cm
then appendDiags [mkDiag Warning "repeated constructor" c]
else mkError "illegal new constructor" c
return e { constr = addOpTo c ty $ constr e }
else mkError "unexpected subsort embedding" a) cs aalts
return si
CaslSortItem s -> fmap (CaslSortItem . item)
$ ana_SORT_ITEM minFplTerm mix NonEmptySorts $ emptyAnno s
anaFplOpItem :: Ana FplOpItem FplExt () TermExt SignExt
anaFplOpItem mix oi = case oi of
FunOp fd@(FunDef i oh@(Op_head _ vs r _) at ps) -> do
let mty = headToType oh
lb = getRLabel at
addFunToSign fd
e <- get -- save
put e { varMap = Map.empty }
mapM_ addVars vs
sign <- get
put e -- restore
let Result ds mt = anaTerm minFplTerm mix sign r ps $ item at
addDiags ds
case mt of
Nothing -> return
$ maybe oi (\ ty -> CaslOpItem $ Op_decl [i] ty [] ps) mty
Just (resT, anaT) -> do
addSentences
[(makeNamed lb $ ExtFORMULA $ FixDef
$ FunDef i oh at { item = anaT } ps)
{ isAxiom = notImplied at, isDef = True }]
return $ FunOp $ FunDef i oh at { item = resT } ps
CaslOpItem o -> fmap (CaslOpItem . item)
$ ana_OP_ITEM minFplTerm mix (emptyAnno o)
freeFunDefVars :: Sign TermExt e -> FunDef -> VarSet
freeFunDefVars s (FunDef _ (Op_head _ vs _ _) at _) = Set.difference
(freeTermVars s $ item at) $ Set.fromList $ flatVAR_DECLs vs
instance TermExtension TermExt where
freeVarsOfExt s te = case te of
FixDef fd -> freeFunDefVars s fd
Case o l _ -> Set.unions $ freeTermVars s o
: map (\ (p, t) -> Set.difference (freeTermVars s t) $ freeTermVars s p) l
Let fd t _ -> Set.difference
(Set.union (freeFunDefVars s fd) $ freeTermVars s t)
$ Set.fromList $ flatVAR_DECLs $ letVars fd
IfThenElse f t e _ -> Set.unions $ map (freeTermVars s) [f, t, e]
EqTerm t e _ -> Set.unions $ map (freeTermVars s) [t, e]
BoolTerm t -> freeTermVars s t
optTermSort te = case te of
Case _ ((_, t) : _) _ -> optTermSort t
Let _ t _ -> optTermSort t
IfThenElse _ t _ _ -> optTermSort t
EqTerm {} -> Just boolSort
BoolTerm t -> optTermSort t
_ -> Nothing -- all others are formulas
termToFormula t = let s = sortOfTerm t in
if s == boolSort
then return $ ExtFORMULA $ BoolTerm t
else fail $ "expected boolean term but found sort: " ++ show s
simplifyTermExt :: FplSign -> TermExt -> TermExt
simplifyTermExt s te = let rec = simplifyTerm minFplTerm simplifyTermExt in
case te of
FixDef fd -> FixDef $ simplifyFunDef s fd
Case o l r -> Case (rec s o)
(map (\ (p, t) -> let
vs = freeTermVars s p
newSign = execState
(mapM_ (uncurry $ flip addVar) $ Set.toList vs) s
in (rec newSign p, rec newSign t)) l) r
Let fd t r ->
let newSign = execState (addFunToSign fd) s
sign2 = execState (addFunVar fd) newSign
in Let (simplifyFunDef newSign fd)
(rec sign2 t) r
IfThenElse f t e r -> IfThenElse (rec s f) (rec s t) (rec s e) r
EqTerm t e r -> EqTerm (rec s t) (rec s e) r
BoolTerm t -> BoolTerm (rec s t)
simplifyFunDef :: FplSign -> FunDef -> FunDef
simplifyFunDef sig fd@(FunDef o h@(Op_head _ vs _ _) at r) =
let newSign = execState (mapM_ addVars vs >> addFunToSign fd) sig
in FunDef o h (fmap (simplifyTerm minFplTerm simplifyTermExt newSign) at) r