Parse_AS.hs revision 4ac9fad8454f66963e8985a41e061653147d4d60
{- |
Module : $Header$
Description : Parser for extended modal logic
Copyright : DFKI GmbH 2009
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : codruta.liliana@gmail.com
Stability : experimental
Portability : portable
-}
module ExtModal.Parse_AS where
import Common.Id
import Common.Token
import Common.Lexer
import Common.AnnoState
import Common.Keywords
import Common.AS_Annotation
import CASL.Formula
import CASL.OpItem
import ExtModal.AS_ExtModal
import ExtModal.Keywords
{- | List of reserved words -}
ext_modal_reserved_words :: [String]
ext_modal_reserved_words =
[ untilS
, sinceS
, allPathsS
, somePathsS
, generallyS
, eventuallyS
, generallyS
, atS
, hereS
, timeS
, nominalS
, nominalsS
, hithertoS
, previouslyS
, muS
, nuS
, diamondS
, termS
, rigidS
, flexibleS
, modalityS
, modalitiesS ]
{- | Modal formula parser -}
modalFormulaParser :: AParser st EM_FORMULA
modalFormulaParser =
{- box, <= -}
do open <- oBracketT
modal <- parseModality
close <- cBracketT
asKey lessEq
number <- getNumber
em_formula <- primFormula ext_modal_reserved_words
return (BoxOrDiamond True modal True (value 10 number) em_formula
$ toRange open [] close)
<|>
{- box, >= -}
do open <- oBracketT
modal <- parseModality
close <- cBracketT
asKey greaterEq
number <- getNumber
em_formula <- primFormula ext_modal_reserved_words
return (BoxOrDiamond True modal False (value 10 number) em_formula
$ toRange open [] close)
<|>
{- diamond, <= -}
do open <- asKey lessS
modal <- parseModality
close <- asKey greaterS
asKey lessEq
number <- getNumber
em_formula <- primFormula ext_modal_reserved_words
return (BoxOrDiamond False modal True (value 10 number) em_formula
$ toRange open [] close)
<|>
{-diamond, >=-}
do open <- asKey lessS
modal <- parseModality
close <- asKey greaterS
asKey greaterEq
number <- getNumber
em_formula <- primFormula ext_modal_reserved_words
return (BoxOrDiamond False modal False (value 10 number) em_formula
$ toRange open [] close)
<|>
{- empty diamond, <= -}
do diam <- asKey diamondS
asKey lessEq
number <- getNumber
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos diam
return (BoxOrDiamond False (Simple_modality $ Token emptyS pos)
True (value 10 number) em_formula pos)
<|>
{-empty diamond, >=-}
do diam <- asKey diamondS
asKey greaterEq
number <- getNumber
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos diam
return (BoxOrDiamond False (Simple_modality $ Token emptyS pos)
False (value 10 number) em_formula pos)
<|>
{- Until, U -}
do formula1 <- primFormula ext_modal_reserved_words
unt <- asKey untilS
formula2 <- primFormula ext_modal_reserved_words
let pos = tokPos unt
return (UntilSince True formula1 formula2 pos)
<|>
{- Since, S -}
do formula1 <- primFormula ext_modal_reserved_words
snc <- asKey sinceS
formula2 <- primFormula ext_modal_reserved_words
let pos = tokPos snc
return (UntilSince False formula1 formula2 pos)
<|>
{- All paths, A -}
do ap <- asKey allPathsS
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos ap
return (PathQuantification True em_formula pos)
<|>
{- Some paths, E -}
do sp <- asKey somePathsS
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos sp
return (PathQuantification False em_formula pos)
<|>
{- Next, X -}
do nxt <- asKey nextS
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos nxt
return (NextY True em_formula pos)
<|>
{- Yesterday, Y -}
do ysd <- asKey yesterdayS
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos ysd
return (NextY False em_formula pos)
<|>
{- Generally, G -}
do grl <- asKey generallyS
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos grl
return (StateQuantification True True em_formula pos)
<|>
{- Eventually, F -}
do evt <- asKey eventuallyS
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos evt
return (StateQuantification True False em_formula pos)
<|>
{- Hitherto, H -}
do hth <- asKey hithertoS
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos hth
return (StateQuantification False True em_formula pos)
<|>
{- Previously, P -}
do prv <- asKey previouslyS
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos prv
return (StateQuantification False False em_formula pos)
<|>
{- parse Mu -}
do mu <- asKey muS
z <- varId ext_modal_reserved_words
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos mu
return (FixedPoint True z em_formula pos)
<|>
{- parse Nu -}
do nu <- asKey nuS
z <- varId ext_modal_reserved_words
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos nu
return (FixedPoint False z em_formula pos)
<|>
{- @ -}
do at <- asKey atS
nom <- simpleId
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos at
return (Hybrid True (Nominal nom) em_formula pos)
<|>
{- Here -}
do her <- asKey hereS
nom <- simpleId
em_formula <- primFormula ext_modal_reserved_words
let pos = tokPos her
return (Hybrid False (Nominal nom) em_formula pos)
{- | Term modality parser -}
parseModality :: GenParser Char (AnnoState st) MODALITY
parseModality =
do t <- simpleId
return (Simple_modality t)
<|>
do asKey tmOParanthS
t <- parseModality
asKey tmCParanthS
return t
<|>
do f <- primFormula ext_modal_reserved_words
asKey tmGuardS
return (Guard f)
<|>
do t <- parseModality
asKey tmTransClosS
return (TransitiveClosure t)
<|>
do t1 <- parseModality
asKey tmCompositionS
t2 <- parseModality
return (Composition t1 t2)
<|>
do t1 <- parseModality
asKey tmUnionS
t2 <- parseModality
return (Union t1 t2)
<|> return (Simple_modality $ mkSimpleId emptyS)
instance TermParser EM_FORMULA where
termParser = aToTermParser modalFormulaParser
{- Signature parser -}
rigor :: AParser st RIGOR
rigor = (asKey rigidS >> return Rigid)
<|> (asKey flexibleS >> return Flexible)
sigItemParser :: AParser st EM_SIG_ITEM
sigItemParser = do
rig <- rigor
itemList ext_modal_reserved_words opS opItem (Rigid_op_items rig)
<|> itemList ext_modal_reserved_words predS predItem (Rigid_pred_items rig)
instance AParsable EM_SIG_ITEM where
aparser = sigItemParser
{- Basic item parser -}
mKey :: AParser st Token
mKey = asKey modalityS <|> asKey modalitiesS
nKey :: AParser st Token
nKey = asKey nominalS <|> asKey nominalsS
basicItemParser :: AParser st EM_BASIC_ITEM
basicItemParser =
do k <- mKey
(annoId, ks) <- separatedBy (annoParser simpleId) anComma
parseAxioms False annoId ( catRange $ k : ks )
<|>
do asKey timeS
k <- mKey
(annoId, ks) <- separatedBy (annoParser simpleId) anComma
parseAxioms True annoId ( catRange $ k : ks )
<|>
do k <- nKey
(annoId, ks) <- separatedBy (annoParser simpleId) anComma
let pos = catRange $ k : ks
return (Nominal_decl annoId pos)
parseAxioms :: Bool -> [Annoted SIMPLE_ID] -> Range -> AParser st EM_BASIC_ITEM
parseAxioms b annoId pos =
do o <- oBraceT
(someAxioms, qs) <- annoParser (formula ext_modal_reserved_words)
`separatedBy` anSemi
c <- cBraceT
return (Simple_mod_decl b annoId someAxioms
$ pos `appRange` toRange o qs c)
<|> return (Simple_mod_decl b annoId [] pos)
instance AParsable EM_BASIC_ITEM where
aparser = basicItemParser