AS_DFOL.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{- |
Module : $Header$
Description : Abstract syntax for first-order logic with dependent types (DFOL)
Copyright : (c) Kristina Sojakova, DFKI Bremen 2009
License : GPLv2 or higher, see LICENSE.txt
Maintainer : k.sojakova@jacobs-university.de
Stability : experimental
Portability : portable
-}
module DFOL.AS_DFOL
( NAME
, DECL
, BASIC_SPEC (..)
, BASIC_ITEM (..)
, TYPE (..)
, TERM (..)
, FORMULA (..)
, SYMB
, SYMB_ITEMS (..)
, SYMB_MAP_ITEMS (..)
, SYMB_OR_MAP (..)
, termRecForm
, termFlatForm
, typeRecForm
, typeFlatForm
, formulaRecForm
, formulaFlatForm
, printNames
, printDecls
, getVarsFromDecls
, getVarTypeFromDecls
, compactDecls
, expandDecls
, Translatable (translate)
, getNewName
, getFreeVars
) where
import Common.AS_Annotation
import Common.Id
import Common.Doc
import Common.DocUtils
import DFOL.Utils
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.List
type NAME = Token
type DECL = ([NAME], TYPE)
-- grammar for basic specification
data BASIC_SPEC = Basic_spec [Annoted BASIC_ITEM]
deriving Show
instance GetRange BASIC_SPEC
data BASIC_ITEM = Decl_item DECL
| Axiom_item FORMULA
deriving Show
data TYPE = Sort
| Form
| Univ TERM
| Func [TYPE] TYPE
| Pi [DECL] TYPE
deriving (Show, Ord)
data TERM = Identifier NAME
| Appl TERM [TERM]
deriving (Show, Ord)
data FORMULA = T
| F
| Pred TERM
| Equality TERM TERM
| Negation FORMULA
| Conjunction [FORMULA]
| Disjunction [FORMULA]
| Implication FORMULA FORMULA
| Equivalence FORMULA FORMULA
| Forall [DECL] FORMULA
| Exists [DECL] FORMULA
deriving (Show, Ord, Eq)
instance GetRange FORMULA
-- grammar for symbols and symbol maps
type SYMB = NAME
data SYMB_ITEMS = Symb_items [SYMB]
deriving (Show, Eq)
data SYMB_MAP_ITEMS = Symb_map_items [SYMB_OR_MAP]
deriving (Show, Eq)
data SYMB_OR_MAP = Symb SYMB
| Symb_map SYMB SYMB
deriving (Show, Eq)
-- canonical forms
{- converts a term into a form where a function is applied to
exactly one argument -}
termRecForm :: TERM -> TERM
termRecForm (Identifier t) = Identifier t
termRecForm (Appl f []) = termRecForm f
termRecForm (Appl f as) =
Appl (termRecForm $ Appl f $ init as) [termRecForm $ last as]
{- converts a type into a form where each construct takes
exactly one argument -}
typeRecForm :: TYPE -> TYPE
typeRecForm (Func [] a) = typeRecForm a
typeRecForm (Func (t : ts) a) = Func [typeRecForm t] $ typeRecForm $ Func ts a
typeRecForm (Pi [] t) = typeRecForm t
typeRecForm (Pi (([], _) : ds) a) = typeRecForm $ Pi ds a
typeRecForm (Pi ((n : ns, t) : ds) a) =
Pi [([n], typeRecForm t)] $ typeRecForm $ Pi ((ns, t) : ds) a
typeRecForm t = t
{- converts a formula into a form where each quantifier takes
exactly one argument -}
formulaRecForm :: FORMULA -> FORMULA
formulaRecForm (Negation f) = formulaRecForm f
formulaRecForm (Conjunction fs) = Conjunction $ map formulaRecForm fs
formulaRecForm (Disjunction fs) = Disjunction $ map formulaRecForm fs
formulaRecForm (Implication f g) =
Implication (formulaRecForm f) (formulaRecForm g)
formulaRecForm (Equivalence f g) =
Equivalence (formulaRecForm f) (formulaRecForm g)
formulaRecForm (Forall [] f) = formulaRecForm f
formulaRecForm (Forall (([], _) : ds) f) = formulaRecForm $ Forall ds f
formulaRecForm (Forall ((n : ns, t) : ds) f) =
Forall [([n], t)] $ formulaRecForm $ Forall ((ns, t) : ds) f
formulaRecForm (Exists [] f) = formulaRecForm f
formulaRecForm (Exists (([], _) : ds) f) = formulaRecForm $ Exists ds f
formulaRecForm (Exists ((n : ns, t) : ds) f) =
Exists [([n], t)] $ formulaRecForm $ Exists ((ns, t) : ds) f
formulaRecForm t = t
{- determines the flattened form of a term, i.e. the function symbol
applied and the argument list -}
termFlatForm :: TERM -> (NAME, [TERM])
termFlatForm (Identifier x) = (x, [])
termFlatForm (Appl f as) = (x, bs ++ as)
where (x, bs) = termFlatForm f
{- converts a type into a flattened form where each operator binds maximum
number of arguments -}
typeFlatForm :: TYPE -> TYPE
typeFlatForm (Func [] t) = typeFlatForm t
typeFlatForm (Func ts t) =
let ts1 = map typeFlatForm ts
t1 = typeFlatForm t
in case t1 of
Func ts2 t2 -> Func (ts1 ++ ts2) t2
_ -> Func ts1 t1
typeFlatForm (Pi [] t) = typeFlatForm t
typeFlatForm (Pi ds t) =
let ds1 = map (\ (ns, t3) -> (ns, typeFlatForm t3)) ds
t1 = typeFlatForm t
in case t1 of
Pi ds2 t2 -> Pi (compactDecls (ds1 ++ ds2)) t2
_ -> Pi (compactDecls ds1) t1
typeFlatForm t = t
{- converts a formula into a flattened form where each quantifier binds maximum
number of arguments -}
formulaFlatForm :: FORMULA -> FORMULA
formulaFlatForm (Negation f) = formulaFlatForm f
formulaFlatForm (Conjunction []) = T
formulaFlatForm (Conjunction fs) = Conjunction $ map formulaFlatForm fs
formulaFlatForm (Disjunction []) = F
formulaFlatForm (Disjunction fs) = Disjunction $ map formulaFlatForm fs
formulaFlatForm (Implication f g) =
Implication (formulaFlatForm f) (formulaFlatForm g)
formulaFlatForm (Equivalence f g) =
Equivalence (formulaFlatForm f) (formulaFlatForm g)
formulaFlatForm (Forall [] f) = formulaFlatForm f
formulaFlatForm (Forall ds1 f) =
let f1 = formulaFlatForm f
in case f1 of
Forall ds2 f2 -> Forall (compactDecls (ds1 ++ ds2)) f2
_ -> Forall (compactDecls ds1) f1
formulaFlatForm (Exists [] f) = formulaFlatForm f
formulaFlatForm (Exists ds1 f) =
let f1 = formulaFlatForm f
in case f1 of
Exists ds2 f2 -> Exists (compactDecls (ds1 ++ ds2)) f2
_ -> Exists (compactDecls ds1) f1
formulaFlatForm t = t
-- substitutions
{- class of types containing identifiers which may be
substituted by terms -}
class Translatable a where
{- substitutions and renamings: the first argument specifies the desired
term/identifier substitutions and the second the set of identifiers which
cannot be used as new variable names -}
translate :: Map.Map NAME TERM -> Set.Set NAME -> a -> a
instance Translatable TERM where
translate m _ = translateTerm m . termRecForm
instance Translatable TYPE where
translate m s t = let s1 = Set.unions $ map getFreeVarsInTerm $ Map.elems m
in translateType m (Set.union s s1) (typeRecForm t)
instance Translatable FORMULA where
translate m s f = let s1 = Set.unions $ map getFreeVarsInTerm $ Map.elems m
in translateFormula m (Set.union s s1)
(formulaRecForm f)
translateTerm :: Map.Map NAME TERM -> TERM -> TERM
translateTerm m (Identifier x) = Map.findWithDefault (Identifier x) x m
translateTerm m (Appl f [a]) = Appl (translateTerm m f) [translateTerm m a]
translateTerm _ t = t
translateType :: Map.Map NAME TERM -> Set.Set NAME -> TYPE -> TYPE
translateType _ _ Sort = Sort
translateType _ _ Form = Form
translateType m s (Univ t) = Univ $ translate m s t
translateType m s (Func ts t) = Func (map (translate m s) ts) (translate m s t)
translateType m s (Pi [([x], t)] a) =
let t1 = translate m s t
x1 = getNewName x s
a1 = translate (Map.insert x (Identifier x1) m) (Set.insert x1 s) a
in Pi [([x1], t1)] a1
translateType _ _ t = t
translateFormula :: Map.Map NAME TERM -> Set.Set NAME -> FORMULA -> FORMULA
translateFormula _ _ T = T
translateFormula _ _ F = F
translateFormula m s (Pred t) = Pred $ translate m s t
translateFormula m s (Equality t1 t2) =
Equality (translate m s t1) (translate m s t2)
translateFormula m s (Negation f) = Negation $ translate m s f
translateFormula m s (Conjunction fs) =
Conjunction $ map (translate m s) fs
translateFormula m s (Disjunction fs) =
Disjunction $ map (translate m s) fs
translateFormula m s (Implication f g) =
Implication (translate m s f) (translate m s g)
translateFormula m s (Equivalence f g) =
Equivalence (translate m s f) (translate m s g)
translateFormula m s (Forall [([x], t)] f) =
let t1 = translate m s t
x1 = getNewName x s
f1 = translate (Map.insert x (Identifier x1) m) (Set.insert x1 s) f
in Forall [([x1], t1)] f1
translateFormula m s (Exists [([x], t)] f) =
let t1 = translate m s t
x1 = getNewName x s
f1 = translate (Map.insert x (Identifier x1) m) (Set.insert x1 s) f
in Exists [([x1], t1)] f1
translateFormula _ _ f = f
{- modifies the given name until it is different from each of the names
in the input set -}
getNewName :: NAME -> Set.Set NAME -> NAME
getNewName var names = getNewNameH var names (tokStr var) 0
getNewNameH :: NAME -> Set.Set NAME -> String -> Int -> Token
getNewNameH var names root i =
if Set.notMember var names
then var
else let newVar = Token (root ++ show i) nullRange
in getNewNameH newVar names root $ i + 1
-- equality
instance Eq TERM where
u == v = eqTerm (termRecForm u) (termRecForm v)
instance Eq TYPE where
u == v = eqType (typeRecForm u) (typeRecForm v)
eqTerm :: TERM -> TERM -> Bool
eqTerm (Identifier x1) (Identifier x2) = x1 == x2
eqTerm (Appl f1 [a1]) (Appl f2 [a2]) = and [f1 == f2, a1 == a2]
eqTerm _ _ = False
eqType :: TYPE -> TYPE -> Bool
eqType Sort Sort = True
eqType Form Form = True
eqType (Univ t1) (Univ t2) = t1 == t2
eqType (Func [t1] s1) (Func [t2] s2) = and [t1 == t2, s1 == s2]
eqType (Pi [([n1], t1)] s1) (Pi [([n2], t2)] s2) =
let syms1 = Set.delete n1 $ getFreeVars s1
syms2 = Set.delete n2 $ getFreeVars s2
v = getNewName n1 $ Set.union syms1 syms2
type1 = translate (Map.singleton n1 (Identifier v)) syms1 s1
type2 = translate (Map.singleton n2 (Identifier v)) syms2 s2
in and [t1 == t2, type1 == type2]
eqType _ _ = False
-- returns a set of unbound identifiers used within a type
getFreeVars :: TYPE -> Set.Set NAME
getFreeVars e = getFreeVarsH $ typeRecForm e
getFreeVarsH :: TYPE -> Set.Set NAME
getFreeVarsH Sort = Set.empty
getFreeVarsH Form = Set.empty
getFreeVarsH (Univ t) = getFreeVarsInTerm t
getFreeVarsH (Func [t] v) =
Set.union (getFreeVarsH t) (getFreeVarsH v)
getFreeVarsH (Pi [([n], t)] a) =
Set.delete n $ Set.union (getFreeVarsH t) (getFreeVarsH a)
getFreeVarsH _ = Set.empty
getFreeVarsInTerm :: TERM -> Set.Set NAME
getFreeVarsInTerm t = getFreeVarsInTermH $ termRecForm t
getFreeVarsInTermH :: TERM -> Set.Set NAME
getFreeVarsInTermH (Identifier x) = Set.singleton x
getFreeVarsInTermH (Appl f [a]) =
Set.union (getFreeVarsInTermH f) (getFreeVarsInTermH a)
getFreeVarsInTermH _ = Set.empty
-- precedences - needed for pretty printing
formulaPrec :: FORMULA -> Int
formulaPrec T = truePrec
formulaPrec F = falsePrec
formulaPrec Pred {} = predPrec
formulaPrec Equality {} = equalPrec
formulaPrec Negation {} = negPrec
formulaPrec Disjunction {} = disjPrec
formulaPrec Conjunction {} = conjPrec
formulaPrec Implication {} = implPrec
formulaPrec Equivalence {} = equivPrec
formulaPrec Forall {} = forallPrec
formulaPrec Exists {} = existsPrec
typePrec :: TYPE -> Int
typePrec Sort = sortPrec
typePrec Form = formPrec
typePrec Univ {} = univPrec
typePrec Func {} = funcPrec
typePrec Pi {} = piPrec
-- pretty printing
instance Pretty BASIC_SPEC where
pretty = printBasicSpec
instance Pretty BASIC_ITEM where
pretty = printBasicItem
instance Pretty TYPE where
pretty = printType . typeFlatForm
instance Pretty TERM where
pretty = printTerm
instance Pretty FORMULA where
pretty = printFormula . formulaFlatForm
instance Pretty SYMB_ITEMS where
pretty = printSymbItems
instance Pretty SYMB_MAP_ITEMS where
pretty = printSymbMapItems
instance Pretty SYMB_OR_MAP where
pretty = printSymbOrMap
printBasicSpec :: BASIC_SPEC -> Doc
printBasicSpec (Basic_spec xs) = vcat $ map pretty xs
printBasicItem :: BASIC_ITEM -> Doc
printBasicItem (Decl_item (ns, t)) = printNames ns <+> text "::" <+> pretty t
printBasicItem (Axiom_item f) = dot <> pretty f
printType :: TYPE -> Doc
printType (Sort) = text "Sort"
printType (Form) = text "Form"
printType (Univ t) = pretty t
printType (Func ts t) =
fsep $ prepPunctuate (text "-> ")
$ map (printTypeWithPrec funcPrec) (ts ++ [t])
printType (Pi xs x) = text "Pi" <+> printDecls xs <+> printType x
printTypeWithPrec :: Int -> TYPE -> Doc
printTypeWithPrec prec t = if typePrec t >= prec
then parens $ printType t
else printType t
printTerm :: TERM -> Doc
printTerm t = if null as
then pretty x
else pretty x <> parens (ppWithCommas as)
where (x, as) = termFlatForm t
printFormula :: FORMULA -> Doc
printFormula (T) = text "true"
printFormula (F) = text "false"
printFormula (Pred x) = pretty x
printFormula (Equality x y) = pretty x <+> text "==" <+> pretty y
printFormula (Negation f) = notDoc <+> printFormulaWithPrec negPrec f
printFormula (Conjunction xs) = fsep $ prepPunctuate (andDoc <> space)
$ map (printFormulaWithPrec conjPrec) xs
printFormula (Disjunction xs) = fsep $ prepPunctuate (orDoc <> space)
$ map (printFormulaWithPrec disjPrec) xs
printFormula (Implication x y) =
printFormulaWithPrec (implPrec - 1) x
<+> implies
<+> printFormulaWithPrec (implPrec - 1) y
printFormula (Equivalence x y) =
printFormulaWithPrec (equivPrec - 1) x
<+> equiv
<+> printFormulaWithPrec (equivPrec - 1) y
printFormula (Forall xs f) = forallDoc <+> printDecls xs <+> printFormula f
printFormula (Exists xs f) = exists <+> printDecls xs <+> printFormula f
printFormulaWithPrec :: Int -> FORMULA -> Doc
printFormulaWithPrec prec f = if formulaPrec f > prec
then parens $ printFormula f
else printFormula f
printSymbItems :: SYMB_ITEMS -> Doc
printSymbItems (Symb_items xs) = ppWithCommas xs
printSymbMapItems :: SYMB_MAP_ITEMS -> Doc
printSymbMapItems (Symb_map_items xs) = ppWithCommas xs
printSymbOrMap :: SYMB_OR_MAP -> Doc
printSymbOrMap (Symb s) = pretty s
printSymbOrMap (Symb_map s t) = pretty s <+> mapsto <+> pretty t
printNames :: [NAME] -> Doc
printNames = ppWithCommas
printDecl :: DECL -> Doc
printDecl (ns, t) = printNames ns <+> colon <+> pretty t
printDecls :: [DECL] -> Doc
printDecls xs = fsep (punctuate semi $ map printDecl xs) <> dot
-- operations on a list of declarations
getVarsFromDecls :: [DECL] -> [NAME]
getVarsFromDecls = concatMap fst
getVarTypeFromDecls :: NAME -> [DECL] -> Maybe TYPE
getVarTypeFromDecls n ds = case result of
Just (_, t) -> Just t
Nothing -> Nothing
where result = find (\ (ns, _) -> elem n ns) ds
compactDecls :: [DECL] -> [DECL]
compactDecls [] = []
compactDecls [d] = [d]
compactDecls (d1 : d2 : ds) =
let (ns1, t1) = d1
(ns2, t2) = d2
in if t1 == t2
then compactDecls $ (ns1 ++ ns2, t1) : ds
else d1 : compactDecls (d2 : ds)
expandDecls :: [DECL] -> [DECL]
expandDecls [] = []
expandDecls (([], _) : ds) = expandDecls ds
expandDecls ((n : ns, t) : ds) = ([n], t) : expandDecls ((ns, t) : ds)