Utils.hs revision 33bdce26495121cdbce30331ef90a1969126a840
{- |
Module : $Header$
Description : Utilities for CspCASLProver related to the actual
construction of Isabelle theories.
Copyright : (c) Liam O'Reilly and Markus Roggenbach,
Swansea University 2009
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : csliam@swansea.ac.uk
Stability : provisional
Portability : portable
Utilities for CspCASLProver related to the actual construction of
Isabelle theories.
-}
module CspCASLProver.Utils
( addAlphabetType
, addAllBarTypes
, addAllChooseFunctions
, addAllCompareWithFun
, addAllIntegrationTheorems
, addDataSetTypes
, addEqFun
, addEventDataType
, addFlatTypes
, addInstansanceOfEquiv
, addJustificationTheorems
, addPreAlphabet
, addProcMap
, addProcNameDatatype
, addProjFlatFun
) where
import CASL.AS_Basic_CASL (SORT, OpKind(..))
import qualified CASL.Fold as CASL_Fold
import qualified CASL.Sign as CASLSign
import qualified CASL.Inject as CASLInject
import Common.AS_Annotation (makeNamed, Named, SenAttr(..))
import qualified Common.Lib.Rel as Rel
import Comorphisms.CFOL2IsabelleHOL (IsaTheory)
import qualified Comorphisms.CFOL2IsabelleHOL as CFOL2IsabelleHOL
import CspCASL.AS_CspCASL_Process (PROCESS_NAME)
import CspCASL.SignCSP (ChanNameMap, CspSign(..), ProcProfile(..),
CspCASLSen(..), isProcessEq)
import CspCASLProver.Consts
import CspCASLProver.IsabelleUtils
import CspCASLProver.TransProcesses (transProcess)
import qualified Data.List as List
import qualified Data.Map as Map
import qualified Data.Set as Set
import Isabelle.IsaConsts
import Isabelle.IsaSign
-------------------------------------------------------------------------
-- Functions for adding the PreAlphabet datatype to an Isabelle theory --
-------------------------------------------------------------------------
-- | Add the PreAlphabet (built from a list of sorts) to an Isabelle
-- theory.
addPreAlphabet :: [SORT] -> IsaTheory -> IsaTheory
addPreAlphabet sortList isaTh =
let preAlphabetDomainEntry = mkPreAlphabetDE sortList
-- Add to the isabelle signature the new domain entry
in updateDomainTab preAlphabetDomainEntry isaTh
-- | Make a Domain Entry for the PreAlphabet from a list of sorts.
mkPreAlphabetDE :: [SORT] -> DomainEntry
mkPreAlphabetDE sorts =
(Type {typeId = preAlphabetS, typeSort = [isaTerm], typeArgs = []},
map (\sort ->
(mkVName (mkPreAlphabetConstructor sort),
[Type {typeId = convertSort2String sort,
typeSort = [isaTerm],
typeArgs = []}])
) sorts
)
----------------------------------------------------------------
-- Functions for adding the eq functions and the compare_with --
-- functions to an Isabelle theory --
----------------------------------------------------------------
-- | Add the eq function to an Isabelle theory using a list of sorts
addEqFun :: [SORT] -> IsaTheory -> IsaTheory
addEqFun sortList isaTh =
let eqtype = mkFunType preAlphabetType $ mkFunType preAlphabetType boolType
isaThWithConst = addConst eq_PreAlphabetS eqtype isaTh
mkEq sort =
let x = mkFree "x"
y = mkFree "y"
lhs = binEq_PreAlphabet lhs_a y
lhs_a = termAppl (conDouble (mkPreAlphabetConstructor sort)) x
rhs = termAppl rhs_a y
rhs_a = termAppl (conDouble (mkCompareWithFunName sort)) x
in binEq lhs rhs
eqs = map mkEq sortList
in addPrimRec eqs isaThWithConst
-- | Add all compare_with functions for a given list of sorts to an
-- Isabelle theory. We need to know about the casl signature (data
-- part of a CspCASL spec) so that we can pass it on to the
-- addCompareWithFun function
addAllCompareWithFun :: CASLSign.CASLSign -> IsaTheory -> IsaTheory
addAllCompareWithFun caslSign isaTh =
let sortList = Set.toList(CASLSign.sortSet caslSign)
in foldl (addCompareWithFun caslSign) isaTh sortList
-- | Add a single compare_with function for a given sort to an
-- Isabelle theory. We need to know about the casl signature (data
-- part of a CspCASL spec) to work out the RHS of the equations.
addCompareWithFun :: CASLSign.CASLSign -> IsaTheory -> SORT -> IsaTheory
addCompareWithFun caslSign isaTh sort =
let sortList = Set.toList(CASLSign.sortSet caslSign)
sortType = Type {typeId = convertSort2String sort, typeSort = [],
typeArgs =[]}
funName = mkCompareWithFunName sort
funType = mkFunType sortType $ mkFunType preAlphabetType boolType
isaThWithConst = addConst funName funType isaTh
sortSuperSet = CASLSign.supersortsOf sort caslSign
mkEq sort' =
let x = mkFree "x"
y = mkFree "y"
sort'Constructor = mkPreAlphabetConstructor sort'
lhs = termAppl lhs_a lhs_b
lhs_a = termAppl (conDouble funName) x
lhs_b = termAppl (conDouble (sort'Constructor)) y
sort'SuperSet =CASLSign.supersortsOf sort' caslSign
commonSuperList = Set.toList (Set.intersection
sortSuperSet
sort'SuperSet)
-- If there are no tests then the rhs=false else
-- combine all tests using binConj
rhs = if (null allTests)
then false
else foldr1 binConj allTests
-- The tests produce a list of equations for each test
-- Test 1 = test equality at: current sort vs current sort
-- Test 2 = test equality at: current sort vs super sorts
-- Test 3 = test equality at: super sorts vs current sort
-- Test 4 = test equality at: super sorts vs super sorts
allTests = concat [test1, test2, test3, test4]
test1 = if (sort == sort') then [binEq x y] else []
test2 = if (Set.member sort sort'SuperSet)
then [binEq x (mkInjection sort' sort y)]
else []
test3 = if (Set.member sort' sortSuperSet)
then [binEq (mkInjection sort sort' x) y]
else []
test4 = if (null commonSuperList)
then []
else map test4_atSort commonSuperList
test4_atSort s = binEq (mkInjection sort s x)
(mkInjection sort' s y)
in binEq lhs rhs
eqs = map mkEq sortList
in addPrimRec eqs isaThWithConst
--------------------------------------------------------
-- Functions for producing the Justification theorems --
--------------------------------------------------------
-- | Add all justification theorems to an Isabelle Theory. We need to
-- the CASL signature (from the datapart) and the PFOL Signature to
-- pass it on. We could recalculate the PFOL signature from the CASL
-- signature here, but we dont as it can be passed in. We need the
-- PFOL signature which is the data part CASL signature afetr
-- translation to PCFOL (i.e. without subsorting)
addJustificationTheorems :: CASLSign.CASLSign -> CASLSign.CASLSign ->
IsaTheory -> IsaTheory
addJustificationTheorems caslSign pfolSign isaTh =
let sortRel = Rel.toList(CASLSign.sortRel caslSign)
sorts = Set.toList(CASLSign.sortSet caslSign)
in addTransitivityTheorem sorts sortRel
$ addAllInjectivityTheorems pfolSign sorts sortRel
$ addAllDecompositionTheorem pfolSign sorts sortRel
$ addSymmetryTheorem sorts
$ addReflexivityTheorem
$ isaTh
-- | Add the reflexivity theorem and proof to an Isabelle Theory
addReflexivityTheorem :: IsaTheory -> IsaTheory
addReflexivityTheorem isaTh =
let name = reflexivityTheoremS
x = mkFree "x"
thmConds = []
thmConcl = binEq_PreAlphabet x x
proof' = IsaProof {
proof = [Apply [Induct x, Auto] False],
end = Done
}
in addTheoremWithProof name thmConds thmConcl proof' isaTh
-- | Add the symmetry theorem and proof to an Isabelle Theory. We need
-- to know the number of sorts, but instead we are given a list of
-- all sorts
addSymmetryTheorem :: [SORT] -> IsaTheory -> IsaTheory
addSymmetryTheorem sorts isaTh =
let numSorts = length(sorts)
name = symmetryTheoremS
x = mkFree "x"
y = mkFree "y"
thmConds = [binEq_PreAlphabet x y]
thmConcl = binEq_PreAlphabet y x
-- We want to induct Y then apply simp numSorts times and reapeat this
-- apply as many times as possibe, thus the true at the end
-- inductY = [Apply ((Induct y):(replicate numSorts Simp)) True]
-- Bug in above in isabelle - does not work for all specs
-- Now we do induction on Y then auto
inductY = [Apply [Induct y, Auto] True]
proof' = IsaProof {
-- Add in front of inductY a apply induct on x
proof = ((Apply [(Induct x)] False) : inductY),
end = Done
}
in addTheoremWithProof name thmConds thmConcl proof' isaTh
-- | Add all the decoposition theorems and proofs
addAllDecompositionTheorem :: CASLSign.CASLSign -> [SORT] -> [(SORT,SORT)] ->
IsaTheory -> IsaTheory
addAllDecompositionTheorem pfolSign sorts sortRel isaTh =
let tripples = [(s1,s2,s3) |
(s1,s2) <- sortRel, (s2',s3) <- sortRel, s2==s2']
in foldl (addDecompositionTheorem pfolSign sorts sortRel) isaTh tripples
-- | Add the decomposition theorem and proof which should be deduced
-- from the transitivity axioms from the translation CASL2PCFOL;
-- CASL2SubCFOL for a pair of injections represented as a tripple of
-- sorts. e.g. (S,T,U) means produce the lemma and proof for
-- inj_T_U(inj_S_T(x)) = inj_S_U(x). As a work around, we need to
-- know all sorts to pass them on.
addDecompositionTheorem :: CASLSign.CASLSign -> [SORT] -> [(SORT,SORT)] ->
IsaTheory -> (SORT,SORT,SORT) -> IsaTheory
addDecompositionTheorem pfolSign sorts sortRel isaTh (s1,s2,s3) =
let x = mkFree "x"
-- These 5 lines make use of currying
injOp_s1_s2 = mkInjection s1 s2
injOp_s2_s3 = mkInjection s2 s3
injOp_s1_s3 = mkInjection s1 s3
inj_s1_s2_s3_x = injOp_s2_s3 (injOp_s1_s2 x)
inj_s1_s3_x = injOp_s1_s3 x
definedOp_s1 = getDefinedOp sorts s1
definedOp_s3 = getDefinedOp sorts s3
collectionTransAx = getCollectionTransAx sortRel
collectionTotAx = getCollectionTotAx pfolSign
collectionNotDefBotAx = getCollectionNotDefBotAx sorts
name = getDecompositionThmName(s1, s2, s3)
conds = []
concl = binEq inj_s1_s2_s3_x inj_s1_s3_x
proof' = IsaProof [Apply[CaseTac (definedOp_s3 inj_s1_s2_s3_x)] False,
-- Case 1
Apply[SubgoalTac(definedOp_s1 x)] False,
Apply[Insert collectionTransAx] False,
Apply[Simp] False,
Apply[SimpAdd Nothing collectionTotAx] False,
-- Case 2
Apply[SubgoalTac(
termAppl notOp(definedOp_s3 inj_s1_s3_x))] False,
Apply[SimpAdd Nothing collectionNotDefBotAx] False,
Apply[SimpAdd Nothing collectionTotAx] False]
Done
in addTheoremWithProof name conds concl proof' isaTh
-- | Add all the injectivity theorems and proofs
addAllInjectivityTheorems :: CASLSign.CASLSign -> [SORT] -> [(SORT,SORT)] ->
IsaTheory -> IsaTheory
addAllInjectivityTheorems pfolSign sorts sortRel isaTh =
foldl (addInjectivityTheorem pfolSign sorts sortRel) isaTh sortRel
-- | Add the injectivity theorem and proof which should be deduced
-- from the embedding_Injectivity axioms from the translation
-- CASL2PCFOL; CASL2SubCFOL for a single injection represented as a
-- pair of sorts. As a work around, we need to know all sorts to
-- pass them on
addInjectivityTheorem :: CASLSign.CASLSign -> [SORT] -> [(SORT,SORT)] ->
IsaTheory -> (SORT,SORT) -> IsaTheory
addInjectivityTheorem pfolSign sorts sortRel isaTh (s1,s2) =
let x = mkFree "x"
y = mkFree "y"
injX = mkInjection s1 s2 x
injY = mkInjection s1 s2 y
definedOp_s1 = getDefinedOp sorts s1
definedOp_s2 = getDefinedOp sorts s2
collectionEmbInjAx = getCollectionEmbInjAx sortRel
collectionTotAx = getCollectionTotAx pfolSign
collectionNotDefBotAx = getCollectionNotDefBotAx sorts
name = getInjectivityThmName(s1, s2)
conds = [binEq injX injY]
concl = binEq x y
proof' = IsaProof [Apply [CaseTac (definedOp_s2 injX)] False,
-- Case 1
Apply[SubgoalTac(definedOp_s1 x)] False,
Apply[SubgoalTac(definedOp_s1 y)] False,
Apply[Insert collectionEmbInjAx] False,
Apply[Simp] False,
Apply[SimpAdd Nothing collectionTotAx] False,
Apply[SimpAdd (Just No_asm_use) collectionTotAx]
False,
-- Case 2
Apply[SubgoalTac(termAppl notOp (definedOp_s1 x))]
False,
Apply[SubgoalTac(termAppl notOp(definedOp_s1 y))]
False,
Apply[SimpAdd Nothing collectionNotDefBotAx] False,
Apply[SimpAdd Nothing collectionTotAx] False,
Apply[SimpAdd (Just No_asm_use) collectionTotAx]
False]
Done
in addTheoremWithProof name conds concl proof' isaTh
-- | Add the transitivity theorem and proof to an Isabelle Theory. We
-- need to know the number of sorts to know how much induction to
-- perfom and also the sub-sort relation to build the collection of
-- injectivity theorem names
addTransitivityTheorem :: [SORT] -> [(SORT,SORT)] -> IsaTheory -> IsaTheory
addTransitivityTheorem sorts sortRel isaTh =
let colInjThmNames = getColInjectivityThmName sortRel
colDecompThmNames = getColDecompositionThmName sortRel
numSorts = length(sorts)
name = transitivityS
x = mkFree "x"
y = mkFree "y"
z = mkFree "z"
thmConds = [binEq_PreAlphabet x y, binEq_PreAlphabet y z]
thmConcl = binEq_PreAlphabet x z
simpPlus = SimpAdd Nothing (colDecompThmNames ++ colInjThmNames)
-- We want to induct Y, Z and perfom simplification is a clever way,
-- namely,
-- apply(induct y, (induct z, simp * numSorts) * numSorts)+
inductZ = (Induct z):(replicate numSorts simpPlus)
inductYZ = ((Induct y):concat(replicate numSorts inductZ))
-- Main induction and simplification proof command
inductPC = [Apply inductYZ True]
proof' = IsaProof {
proof = (Apply [Induct x] False : inductPC),
end = Done
}
in addTheoremWithProof name thmConds thmConcl proof' isaTh
--------------------------------------------------------------
-- Functions for producing instances of equivalence classes --
--------------------------------------------------------------
-- | Function to add preAlphabet as an equivalence relation to an
-- Isabelle theory
addInstansanceOfEquiv :: IsaTheory -> IsaTheory
addInstansanceOfEquiv isaTh =
let eqvSort = [IsaClass eqvTypeClassS]
eqvProof = IsaProof [] (By (Other "intro_classes"))
equivSort = [IsaClass equivTypeClassS]
equivProof = IsaProof [Apply [Other "intro_classes"] False,
Apply [Other ("unfold " ++ preAlphabetSimS
++ "_def")] False,
Apply [Other ("rule " ++ reflexivityTheoremS)]
False,
Apply [Other ("rule " ++ transitivityS
++", auto")] False,
Apply [Other ("rule " ++ symmetryTheoremS
++ ", simp")] False]
Done
x = mkFree "x"
y = mkFree "y"
defLhs = binEqvSim x y
defRhs = binEq_PreAlphabet x y
in addInstanceOf preAlphabetS [] equivSort equivProof
$ addDef preAlphabetSimS defLhs defRhs
$ addInstanceOf preAlphabetS [] eqvSort eqvProof
$ isaTh
-------------------------------------------------------------
-- Functions for producing the alphabet type --
-------------------------------------------------------------
-- | Function to add the Alphabet type (type syonnym) to an Isabelle theory
addAlphabetType :: IsaTheory -> IsaTheory
addAlphabetType isaTh =
let isaTh_sign = fst isaTh
isaTh_sign_tsig = tsig isaTh_sign
myabbrs = abbrs isaTh_sign_tsig
abbrsNew = Map.insert alphabetS ([], preAlphabetQuotType) myabbrs
isaTh_sign_updated = isaTh_sign {
tsig = (isaTh_sign_tsig {abbrs =abbrsNew})
}
in (isaTh_sign_updated, snd isaTh)
-------------------------------------------------------------
-- Functions for producing the bar types --
-------------------------------------------------------------
-- | Function to add all the bar types to an Isabelle theory.
addAllBarTypes :: [SORT] -> IsaTheory -> IsaTheory
addAllBarTypes sorts isaTh = foldl addBarType isaTh sorts
-- | Function to add the bar types of a sort to an Isabelle theory.
addBarType :: IsaTheory -> SORT -> IsaTheory
addBarType isaTh sort =
let sortBarString = mkSortBarString sort
barType = mkSortBarType sort
isaTh_sign = fst isaTh
isaTh_sen = snd isaTh
x = mkFree "x"
y = mkFree "y"
rhs = termAppl (conDouble (mkPreAlphabetConstructor sort)) y
bin_eq = binEq x $ termAppl (conDouble classS ) rhs
exist_eq =termAppl (conDouble exS) (Abs y bin_eq NotCont)
subset = SubSet x alphabetType exist_eq
sen = TypeDef barType subset (IsaProof [] (By Auto))
namedSen = (makeNamed sortBarString sen)
in (isaTh_sign, isaTh_sen ++ [namedSen])
-------------------------------------------------------------
-- Functions for producing the choose functions --
-------------------------------------------------------------
-- | Add all choose functions for a given list of sorts to an Isabelle
-- theory.
addAllChooseFunctions :: [SORT] -> IsaTheory -> IsaTheory
addAllChooseFunctions sorts isaTh =
let isaTh' = foldl addChooseFunction isaTh sorts --add function and def
in foldl addChooseFunctionLemma isaTh' sorts --add theorem and proof
-- | Add a single choose function for a given sort to an Isabelle
-- theory. The following Isabelle code is produced by this function:
-- consts choose_Nat :: "Alphabet => Nat"
-- defs choose_Nat_def: "choose_Nat x == contents{y . class(C_Nat y) = x}"
addChooseFunction :: IsaTheory -> SORT -> IsaTheory
addChooseFunction isaTh sort =
let --constant
sortType = Type {typeId = convertSort2String sort,
typeSort = [],
typeArgs =[]}
chooseFunName = mkChooseFunName sort
chooseFunType = mkFunType alphabetType sortType
-- definition
x = mkFree "x"
y = mkFree "y"
contentsOp = termAppl (conDouble "contents")
sortConsOp = termAppl (conDouble (mkPreAlphabetConstructor sort))
bin_eq = binEq (classOp $ sortConsOp y) x
subset = SubSet y sortType bin_eq
lhs = mkChooseFunOp sort $ x
rhs = contentsOp (Set subset)
in -- Add defintion to theory
addDef chooseFunName lhs rhs
-- Add constant to theory
$ addConst chooseFunName chooseFunType isaTh
-- | Add a single choose function lemma for a given sort to an
-- Isabelle theory. The following Isabelle code is produced by this
-- function: lemma "choose_Nat (class (C_Nat x)) = x". The proof is
-- also produced.
addChooseFunctionLemma :: IsaTheory -> SORT -> IsaTheory
addChooseFunctionLemma isaTh sort =
let sortType = Type {typeId = convertSort2String sort,
typeSort = [],
typeArgs =[]}
chooseFunName = mkChooseFunName sort
x = mkFree "x"
y = mkFree "y"
sortConsOp = termAppl (conDouble (mkPreAlphabetConstructor sort))
-- theorm
subgoalTacTermLhsBinEq = binEq (classOp $ sortConsOp y)
(classOp $ sortConsOp x)
subgoalTacTermLhs = Set $ SubSet y sortType subgoalTacTermLhsBinEq
subgoalTacTermRhs = Set $ FixedSet [x]
subgoalTacTerm = binEq subgoalTacTermLhs subgoalTacTermRhs
thmConds = []
thmConcl = binEq (mkChooseFunOp sort $ classOp $ sortConsOp x) x
proof' = IsaProof [Apply[Other ("unfold " ++ chooseFunName ++ "_def")]
False,
Apply[SubgoalTac subgoalTacTerm] False,
Apply[Simp] False,
Apply[SimpAdd Nothing [quotEqualityS]] False,
Apply[Other ("unfold "++ preAlphabetSimS
++ "_def")] False,
Apply[Auto] False]
Done
in addTheoremWithProof chooseFunName thmConds thmConcl proof' isaTh
-------------------------------------------------------------
-- Functions for producing the integration theorems --
-------------------------------------------------------------
-- | Add all the integration theorems. We need to know all the sorts
-- to produce all the theorems. We need to know the CASL signature
-- of the data part to pass it on as an argument.
addAllIntegrationTheorems :: [SORT] -> CASLSign.CASLSign -> IsaTheory ->
IsaTheory
addAllIntegrationTheorems sorts caslSign isaTh =
let pairs = [(s1,s2) | s1 <- sorts, s2 <- sorts]
in foldl (addIntegrationTheorem_A caslSign) isaTh pairs
-- | Add Integration theorem A -- Compare to elements of the Alphabet.
-- We add the integration theorem based on the sorts of both
-- elements of the alphabet. We need to know the subsort relation to
-- find the highest common sort, but we pass in the CASL signature
-- for the data part.
addIntegrationTheorem_A :: CASLSign.CASLSign -> IsaTheory -> (SORT,SORT) ->
IsaTheory
addIntegrationTheorem_A caslSign isaTh (s1,s2) =
let sortRel = Rel.toList(CASLSign.sortRel caslSign)
s1SuperSet = CASLSign.supersortsOf s1 caslSign
s2SuperSet = CASLSign.supersortsOf s2 caslSign
commonSuperList = Set.toList (Set.intersection
(Set.insert s1 s1SuperSet)
(Set.insert s2 s2SuperSet))
x = mkFree "x"
y = mkFree "y"
s1ConsOp = termAppl (conDouble (mkPreAlphabetConstructor s1))
s2ConsOp = termAppl (conDouble (mkPreAlphabetConstructor s2))
rhs = binEq (classOp $ s1ConsOp x) (classOp $ s2ConsOp y)
lhs = if (null commonSuperList)
then false
else
-- BUG pick any common sort for now (this does hold
-- and is valid) we should pick the top most one.
let s' = head commonSuperList
in binEq (mkInjection s1 s' x) (mkInjection s2 s' y)
thmConds = []
thmConcl = binEq rhs lhs
-- theorem names for proof
colInjThmNames = getColInjectivityThmName sortRel
colDecompThmNames = getColDecompositionThmName sortRel
proof' = IsaProof [Apply [SimpAdd Nothing [quotEqualityS]] False,
Apply [Other ("unfold " ++ preAlphabetSimS
++ "_def")] False,
Apply [AutoSimpAdd Nothing
(colDecompThmNames ++ colInjThmNames)] False]
Done
in addTheoremWithProof "IntegrationTheorem_A"
thmConds thmConcl proof' isaTh
--------------------------------------------------------------------------
-- Functions for adding the Event datatype and the channel encoding --
--------------------------------------------------------------------------
-- | Add the Event datatype (built from a list of channels and the subsort
-- relation) to an Isabelle theory. BUG
addEventDataType :: Rel.Rel SORT -> ChanNameMap -> IsaTheory -> IsaTheory
addEventDataType sortRel chanNameMap isaTh =
let eventDomainEntry = mkEventDE sortRel chanNameMap
-- Add to the isabelle signature the new domain entry
in updateDomainTab eventDomainEntry isaTh
-- | Make a Domain Entry for the Event from a list of sorts. BUG
mkEventDE :: Rel.Rel SORT -> ChanNameMap -> DomainEntry
mkEventDE sortRel chanNameMap =
let flat = (mkVName flatS, [alphabetType])
-- Make a constuctor type pair for a channel with a target sort
mkCon (c, s) = (mkVName (mkEventChannelConstructor c s),
[mkSortBarType s])
-- Make pairs of channel and sorts, where the sorts are all the possible
-- predecessors of the sort of the channel.
mkChanSortPairs (cn,sort) =
-- get all predecessors including s
let subSorts = Set.insert sort (Rel.predecessors sortRel sort)
mkPair s = (cn,s)
in Set.toList $ Set.map mkPair subSorts
-- We build the event type out of the flat constructions and the list of
-- channel constructions
in (eventType, (flat:(map mkCon $ concat $ map mkChanSortPairs $
Map.toList chanNameMap)))
-- | Add the eq function to an Isabelle theory using a list of sorts
addProjFlatFun :: IsaTheory -> IsaTheory
addProjFlatFun isaTh =
let eqtype = mkFunType eventType alphabetType
isaThWithConst = addConst projFlatS eqtype isaTh
x = mkFree "x"
lhs = termAppl (conDouble projFlatS) flatX
flatX = termAppl (conDouble flatS) x
rhs = x
-- projFlat(Flat x) = x
eqs = [binEq lhs rhs]
in addPrimRec eqs isaThWithConst
-- | Function to add all the Flat types. These capture the original sorts, but
-- use the bar values instead wrapped up in the Flat constructor(the Flat
-- channel). We use this as a set of normal communications (action prefix,
-- send, recieve).
addFlatTypes :: [SORT] -> IsaTheory -> IsaTheory
addFlatTypes sorts isaTh = foldl addFlatType isaTh sorts
-- | Function to add the flat type of a sort to an Isabelle theory.
addFlatType :: IsaTheory -> SORT -> IsaTheory
addFlatType isaTh sort =
let sortFlatString = mkSortFlatString sort
flatType = Type {typeId = sortFlatString, typeSort = [], typeArgs =[]}
isaTh_sign = fst isaTh
isaTh_sen = snd isaTh
x = mkFree "x"
y = mkFree "y"
flatY = termAppl (conDouble flatS) y
-- y in sort_Bar
condition1 = binMembership y (conDouble $ mkSortBarString sort)
-- x = Flat y
condition2 = binEq x flatY
-- y in sort_Bar /\ x = Flat y
condition_eq = binConj condition1 condition2
exist_eq = termAppl (conDouble exS) (Abs y condition_eq NotCont)
subset = SubSet x eventType exist_eq
proof' = AutoSimpAdd Nothing [(mkSortBarString sort) ++ "_def"]
sen = TypeDef flatType subset (IsaProof [] (By proof'))
namedSen = (makeNamed sortFlatString sen)
in (isaTh_sign, isaTh_sen ++ [namedSen])
-- | Function to add all the Data Set types. These capture the original sorts by
-- creating sets of the bar varients. We use these sets when communicating
-- over a channel.
addDataSetTypes :: [SORT] -> IsaTheory -> IsaTheory
addDataSetTypes sorts isaTh = foldl addDataSetType isaTh sorts
-- | Function to add the Data Set type of a sort to an Isabelle theory.
addDataSetType :: IsaTheory -> SORT -> IsaTheory
addDataSetType isaTh sort =
let sortDataSetString = mkSortDataSetString sort
dataSetType = Type {typeId = sortDataSetString,
typeSort = [],
typeArgs =[]}
isaTh_sign = fst isaTh
isaTh_sen = snd isaTh
x = mkFree "x"
y = mkFree "y"
-- y in sort_Bar
condition1 = binMembership y (conDouble $ mkSortBarString sort)
-- x = Abs_sort_Bar y
condition2 = binEq x ((mkSortBarAbsOp sort) y)
-- y in x_Bar /\ x = Flat y
condition_eq = binConj condition1 condition2
exist_eq = termAppl (conDouble exS) (Abs y condition_eq NotCont)
subset = SubSet x (mkSortBarType sort) exist_eq
proof' = AutoSimpAdd Nothing [(mkSortBarString sort) ++ "_def"]
sen = TypeDef dataSetType subset (IsaProof [] (By proof'))
namedSen = (makeNamed sortDataSetString sen)
in (isaTh_sign, isaTh_sen ++ [namedSen])
--------------------------------------------------------------------------
-- Functions for adding the process name datatype to an Isabelle theory --
--------------------------------------------------------------------------
-- | Add process name datatype which has a constructor for each
-- process name (along with the arguments for the process) in the
-- CspCASL Signature to an Isabelle theory
addProcNameDatatype :: CspSign -> IsaTheory -> IsaTheory
addProcNameDatatype cspSign isaTh =
let -- Create a list of pairs of process names and thier profiles
procSetList = Map.toList (procSet cspSign)
procNameDomainEntry = mkProcNameDE procSetList
in updateDomainTab procNameDomainEntry isaTh
-- | Make a proccess name Domain Entry from a list of a Process name and profile
-- pair. This creates a data type for the process names.
mkProcNameDE :: [(PROCESS_NAME, ProcProfile)] -> DomainEntry
mkProcNameDE processes =
let -- The a list of pairs of constructors and their arguments
constructors = map mk_cons processes
-- Take a proccess name and its argument sorts (also its
-- commAlpha - thrown away) and make a pair representing the
-- constructor and the argument types
-- Note: The processes need to have arguments of the bar variants of the
-- sorts not the original sorts
mk_cons (procName, (ProcProfile sorts _)) =
(mkVName (mkProcNameConstructor procName), map mkSortBarType sorts)
in
(procNameType, constructors)
-------------------------------------------------------------------------
-- Functions adding the process map function to an Isabelle theory --
-------------------------------------------------------------------------
-- | Add the function procMap to an Isabelle theory. This function maps process
-- names to real processes build using the same names and the alphabet i.e.,
-- ProcName => (ProcName, Alphabet) proc. We need to know the CspCASL
-- sentences and the casl signature (data part). We need the PCFOL and CFOL
-- signatures of the data part after translation to PCFOL and CFOL to pass
-- along the process translation.
addProcMap :: [Named CspCASLSen] -> CASLSign.Sign () () ->
CASLSign.Sign () () -> CASLSign.Sign () () ->
IsaTheory -> IsaTheory
addProcMap namedSens caslSign pcfolSign cfolSign isaTh =
let
-- Translate a fully qualified variable (CASL term) to Isabelle
tyToks = CFOL2IsabelleHOL.typeToks caslSign
trForm = CFOL2IsabelleHOL.formTrCASL
strs = CFOL2IsabelleHOL.getAssumpsToks caslSign
transVar fqVar = CASL_Fold.foldTerm
(CFOL2IsabelleHOL.transRecord
caslSign tyToks trForm strs) fqVar
-- Extend Isabelle theory with additional constant
isaThWithConst = addConst procMapS procMapType isaTh
-- Get the plain sentences from the named senetences
sens = map (\namedsen -> sentence namedsen) namedSens
-- Filter so we only have proccess equations and no CASL senetences
processEqs = filter isProcessEq sens
-- the term representing the procMap that tajes a term as a
-- parameter
procMapTerm = termAppl (conDouble procMapS)
-- Make a single equation for the primrec from a process equation
mkEq (ProcessEq procName fqVars _ proc) =
let -- Make the name (string) for this process
procNameString = convertProcessName2String procName
-- Change the name to a term
procNameTerm = conDouble procNameString
-- Turn the list of variables into a list of Isabelle
-- free variables
varTerms = map transVar fqVars
lhs = procMapTerm (foldl termAppl (procNameTerm) varTerms)
rhs = transProcess caslSign pcfolSign cfolSign fqVars proc
in binEq lhs rhs
-- to avoid warnings we specify the behaviour on CASL sentences. This
-- should never be called as they have been filtered out.
mkEq(CASLSen _ ) = error "CspCASLProver.Utils.addProcMap: Unexpected CASLSen, Expected ProcessEq"
-- Build equations for primrec using process equations
eqs = map mkEq processEqs
in addPrimRec eqs isaThWithConst
------------------------------------------------------------
-- Basic function to help keep strings consistent --
------------------------------------------------------------
-- | Return the list of strings of all gn_totality axiom names. This
-- function is not implemented in a satisfactory way.
getCollectionTotAx :: CASLSign.CASLSign -> [String]
getCollectionTotAx pfolSign =
let opList = Map.toList $ CASLSign.opMap pfolSign
-- This filter is not quite right
totFilter (_,setOpType) = let listOpType = Set.toList setOpType
in CASLSign.opKind (head listOpType) == Total
totList = filter totFilter opList
mkTotAxName = (\i -> "ga_totality"
++ (if (i==0)
then ""
else ("_" ++ show i))
)
in map mkTotAxName [0 .. (length(totList) - 1)]
-- | Return the name of the definedness function for a sort. We need
-- to know all sorts to perform this workaround
-- This function is not implemented in a satisfactory way
getDefinedName :: [SORT] -> SORT -> String
getDefinedName sorts s =
let index = List.elemIndex s sorts
str = case index of
Nothing -> ""
Just i -> show (i + 1)
in "gn_definedX" ++ str
-- | Return the name of the injection as it is used in the alternative
-- syntax of the injection from one sort to another.
-- This function is not implemented in a satisfactory way
getInjectionName :: SORT -> SORT -> String
getInjectionName s s' =
let t = CASLSign.toOP_TYPE(CASLSign.OpType{CASLSign.opKind = Total,
CASLSign.opArgs = [s],
CASLSign.opRes = s'})
injName = show $ CASLInject.uniqueInjName t
in injName
-- | Return the injection name of the injection from one sort to another
-- This function is not implemented in a satisfactory way
getDefinedOp :: [SORT] -> SORT -> Term -> Term
getDefinedOp sorts s t =
termAppl (con $ VName (getDefinedName sorts s) $ Nothing) t
-- | Return the term representing the injection of a term from one sort to
-- another. Note: the term is returned if both sorts are the same. This
-- function is not implemented in a satisfactory way.
mkInjection :: SORT -> SORT -> Term -> Term
mkInjection s s' t =
let injName = getInjectionName s s'
replace string c s1 = concat (map (\x -> if x==c
then s1
else [x]) string)
injOp = Const {
termName= VName {
new = ("X_" ++ injName),
altSyn = Just (AltSyntax
((replace injName '_' "'_")
++ "/'(_')") [3] 999)
},
termType = Hide {
typ = Type {
typeId ="dummy",
typeSort = [IsaClass "type"],
typeArgs = []
},
kon = NA,
arit= Nothing
}
}
in if s == s'
then t
else termAppl injOp t
-- | Return the list of string of all embedding_injectivity axioms
-- produced by the translation CASL2PCFOL; CASL2SubCFOL. This
-- function is not implemented in a satisfactory way.
getCollectionEmbInjAx :: [(SORT,SORT)] -> [String]
getCollectionEmbInjAx sortRel =
let mkEmbInjAxName = (\i -> "ga_embedding_injectivity"
++ (if (i==0)
then ""
else ("_" ++ show i))
)
in map mkEmbInjAxName [0 .. (length(sortRel) - 1)]
-- | Return the list of strings of all ga_notDefBottom axioms. This function is
-- not implemented in a satisfactory way
getCollectionNotDefBotAx :: [SORT] -> [String]
getCollectionNotDefBotAx sorts =
let mkNotDefBotAxName = (\i -> "ga_notDefBottom"
++ (if (i==0)
then ""
else ("_" ++ show i)))
in map mkNotDefBotAxName [0 .. (length(sorts) - 1)]
-- | Return the list of string of all decomposition theorem names that we
-- generate. This function is not implemented in a satisfactory way
getColDecompositionThmName :: [(SORT,SORT)] -> [String]
getColDecompositionThmName sortRel =
let tripples = [(s1,s2,s3) |
(s1,s2) <- sortRel, (s2',s3) <- sortRel, s2==s2']
in map getDecompositionThmName tripples
-- | Produce the theorem name of the decomposition theorem that we produce for a
-- gievn tripple of sorts.
getDecompositionThmName :: (SORT,SORT,SORT) -> String
getDecompositionThmName (s, s', s'') =
"decomposition_" ++ (convertSort2String s) ++ "_" ++ (convertSort2String s')
++ "_" ++ (convertSort2String s'')
-- | Return the list of strings of the injectivity theorem names that we
-- generate. This function is not implemented in a satisfactory way
getColInjectivityThmName :: [(SORT,SORT)] -> [String]
getColInjectivityThmName sortRel = map getInjectivityThmName sortRel
-- | Produce the theorem name of the injectivity theorem that we produce for a
-- gievn pair of sorts.
getInjectivityThmName :: (SORT,SORT) -> String
getInjectivityThmName (s, s') =
"injectivity_" ++ (convertSort2String s) ++ "_" ++ (convertSort2String s')
-- | Return the list of strings of all the transitivity axioms names produced by
-- the translation CASL2PCFOL; CASL2SubCFOL. This function is not implemented
-- in a satisfactory way.
getCollectionTransAx :: [(SORT,SORT)] -> [String]
getCollectionTransAx sortRel =
let tripples = [(s1,s2,s3) |
(s1,s2) <- sortRel, (s2',s3) <- sortRel, s2==s2']
mkEmbInjAxName = (\i -> "ga_transitivity"
++ (if (i==0)
then ""
else ("_" ++ show i))
)
in map mkEmbInjAxName [0 .. (length(tripples) - 1)]