CspCASLProver.hs revision 3a6decfd748f532d5cb03fbcb7a42fa37b0faab3
{- |
Module : $Header$
Description : Interface to the CspCASLProver (Isabelle based) theorem prover
Copyright : (c) Liam O'Reilly and Markus Roggenbach, Swansea University 2009
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : csliam@swansea.ac.uk
Stability : provisional
Portability : portable
Interface for CspCASLProver theorem prover.
-}
{-
Interface between CspCASLProver and Hets:
Hets writes CspCASLProver's Isabelle .thy files and
starts Isabelle with CspProver
User extends .thy file with proofs
User finishes Isabelle
Hets reads in created *.deps files
-}
module CspCASLProver.CspCASLProver
( cspCASLProver
) where
import CASL.AS_Basic_CASL (CASLFORMULA)
import CASL.Sign (CASLSign, Sign(..))
import Common.AS_Annotation (Named, mapNamedM)
import Common.Result
import qualified Comorphisms.CASL2PCFOL as CASL2PCFOL
import qualified Comorphisms.CASL2SubCFOL as CASL2SubCFOL
import qualified Comorphisms.CFOL2IsabelleHOL as CFOL2IsabelleHOL
import CspCASL.SignCSP (ccSig2CASLSign, ccSig2CspSign, CspCASLSign, CspSign(..)
, CspCASLSen(..))
import CspCASL.Morphism (CspMorphism)
import CspCASLProver.Consts
import CspCASLProver.IsabelleUtils
import CspCASLProver.Utils
import qualified Data.Maybe as Maybe
import qualified Data.Set as Set
import Isabelle.IsaProve (isaProve)
import qualified Isabelle.IsaSign as Isa
import Logic.Prover
import Logic.Comorphism (wrapMapTheory)
-- | The string that Hets uses as CspCASLProver
cspCASLProverS :: String
cspCASLProverS = "CspCASLProver"
-- | The wrapper function that is CspCASL Prover
cspCASLProver :: Prover CspCASLSign CspCASLSen CspMorphism () ()
cspCASLProver = mkProverTemplate cspCASLProverS () cspCASLProverProve
-- | The main cspCASLProver function
cspCASLProverProve :: String -> Theory CspCASLSign CspCASLSen () -> a ->
IO([ProofStatus ()])
cspCASLProverProve thName (Theory ccSign ccSensThSens) _freedefs =
let -- get the CASL signature of the data part of the CspcASL theory
caslSign = ccSig2CASLSign ccSign
-- Get a list of CspCASL named sentences
ccNamedSens = toNamedList ccSensThSens
-- A filter to change a CspCASLSen to a CASLSen (if possible)
caslSenFilter ccSen = case ccSen of
CASLSen sen -> Just sen
ProcessEq _ _ _ _ -> Nothing
-- All named CASL sentences from the datapart
caslNamedSens = Maybe.catMaybes $
map (mapNamedM caslSenFilter) ccNamedSens
-- Generate data encoding. This may fail.
Result diag (dataTh) = produceDataEncoding caslSign caslNamedSens
in case dataTh of
Nothing -> do
-- Data translation failed
putStrLn $ "Sorry, could not encode the data part:" ++ (show diag)
return []
Just (dataThSig, dataThSens, pcfolSign, cfolSign) -> do
-- Data translation succeeded
-- Write out the data encoding
writeIsaTheory (mkThyNameDataEnc thName)
(Theory dataThSig (toThSens dataThSens))
-- Generate and write out the preAlpbate, justification theorems
-- and the instances code.
writeIsaTheory (mkThyNamePreAlphabet thName)
(producePreAlphabet thName caslSign pcfolSign)
-- Generate and write out the Alpbatet construction, bar types
-- and choose functions.
writeIsaTheory (mkThyNameAlphabet thName)
(produceAlphabet thName caslSign)
-- Generate and write out the integration theorems
writeIsaTheory (mkThyNameIntThms thName)
(produceIntegrationTheorems thName caslSign)
-- Generate and Isabelle to prove the process refinements (also produces
-- the processes)
isaProve thName (produceProcesses thName ccSign ccNamedSens pcfolSign
cfolSign) ()
-- | Produce the Isabelle theory of the data part of a CspCASL
-- specification. The data transalation can fail. If it does fail there will
-- be an error message. Its arguments are the CASL signature from the data
-- part and a list of the named CASL sentences from the data part. Returned
-- are the Isabelle signature, Isabelle named sentences and also the CASL
-- signature of the data part after translation to pcfol (i.e. with out
-- subsorting) and cfol (i.e. with out subsorting and partiality).
produceDataEncoding :: CASLSign -> [Named CASLFORMULA] ->
Result (Isa.Sign, [Named Isa.Sentence], CASLSign,
CASLSign)
produceDataEncoding caslSign caslNamedSens =
let -- Comorphisms
casl2pcfol = wrapMapTheory CASL2PCFOL.CASL2PCFOL
pcfol2cfol = wrapMapTheory $ CASL2SubCFOL.CASL2SubCFOL True CASL2SubCFOL.AllSortBottoms
cfol2isabelleHol = wrapMapTheory CFOL2IsabelleHOL.CFOL2IsabelleHOL
in do -- Remove Subsorting from the CASL part of the CspCASL
-- specification
th_pcfol <- casl2pcfol (caslSign, caslNamedSens)
-- Next Remove partial functions
th_cfol <- pcfol2cfol th_pcfol
-- Next Translate to IsabelleHOL code
(th_isa_Sig, th_isa_Sens) <- cfol2isabelleHol th_cfol
return (th_isa_Sig, th_isa_Sens, fst th_pcfol, fst th_cfol)
-- | Produce the Isabelle theory which contains the PreAlphabet,
-- Justification Theorems and also the instances code. We need the
-- PFOL signature which is the data part CASL signature after
-- translation to PCFOL (i.e. without subsorting) to pass on as an
-- argument.
producePreAlphabet :: String -> CASLSign -> CASLSign ->
Theory Isa.Sign Isa.Sentence ()
producePreAlphabet thName caslSign pfolSign =
let sortList = Set.toList(sortSet caslSign)
-- empty Isabelle signature which imports the data encoding
-- and quotient.thy (which is needed for the instances code)
isaSignEmpty = Isa.emptySign {Isa.imports = [mkThyNameDataEnc thName
, quotientThyS] }
-- Start with our empty isabelle theory, add the preAlphabet
-- datetype, then all the comparewith functions, then add the
-- eq function. Finally add the justification theorems and
-- instance of code.
(isaSign, isaSens) = addInstansanceOfEquiv
$ addJustificationTheorems caslSign pfolSign
$ addEqFun sortList
$ addAllCompareWithFun caslSign
$ addPreAlphabet sortList
$ (isaSignEmpty,[])
in Theory isaSign (toThSens isaSens)
-- | Produce the Isabelle theory which contains the Alphabet
-- construction, and also the bar types and choose
-- fucntions for CspCASLProver.
produceAlphabet :: String -> CASLSign -> Theory Isa.Sign Isa.Sentence ()
produceAlphabet thName caslSign =
let sortList = Set.toList(sortSet caslSign)
-- empty Isabelle signature which imports the preAlphabet encoding
isaSignEmpty = Isa.emptySign {
Isa.imports = [mkThyNamePreAlphabet thName]}
-- Start with our empty isabelle theory, add the Alphabet type
-- , then the bar types and finally the choose functions.
(isaSign, isaSens) = addAllChooseFunctions sortList
$ addAllBarTypes sortList
$ addAlphabetType
$ (isaSignEmpty,[])
in Theory isaSign (toThSens isaSens)
-- | Produce the Isabelle theory which contains the Integration
-- Theorems on data
produceIntegrationTheorems :: String -> CASLSign ->
Theory Isa.Sign Isa.Sentence ()
produceIntegrationTheorems thName caslSign =
let sortList = Set.toList(sortSet caslSign)
-- empty Isabelle signature which imports the alphabet encoding
isaSignEmpty = Isa.emptySign {Isa.imports = [mkThyNameAlphabet thName] }
-- Start with our empty isabelle theory and add the
-- integration theorems.
(isaSign, isaSens) = addAllIntegrationTheorems sortList caslSign
$ (isaSignEmpty,[])
in Theory isaSign (toThSens isaSens)
-- | Produce the Isabelle theory which contains the Process Translations and
-- process refinement theorems. We -- need the PCFOL and CFOL signatures of
-- the data part after translation to PCFOL and CFOL to pass -- along to the
-- process translation.
produceProcesses :: String -> CspCASLSign -> [Named CspCASLSen] ->
CASLSign -> CASLSign -> Theory Isa.Sign Isa.Sentence ()
produceProcesses thName ccSign ccNnamedSens pcfolSign cfolSign =
let caslSign = ccSig2CASLSign ccSign
cspSign = ccSig2CspSign ccSign
sortList = Set.toList(sortSet caslSign)
sortRel' = sortRel caslSign
chanNameMap = chans cspSign
-- Isabelle signature which imports the integration theorems encoding
-- and CSP_F
isaSignEmpty = Isa.emptySign {Isa.imports = [mkThyNameIntThms thName
, cspFThyS] }
-- Start with our empty isabelle theory and add the
-- processes the the process refinement theorems.
(isaSign, isaSens) = addProcMap ccNnamedSens caslSign pcfolSign cfolSign
$ addProcNameDatatype cspSign
$ addDataSetTypes sortList
$ addFlatTypes sortList
$ addProjFlatFun
$ addEventDataType sortRel' chanNameMap
$ (isaSignEmpty,[])
in Theory isaSign (toThSens isaSens)