SignCSP.hs revision b87efd3db0d2dc41615ea28669faf80fc1b48d56
{-# LANGUAGE TypeSynonymInstances #-}
{- |
Module : $Id$
Description : CspCASL signatures
Copyright : (c) Markus Roggenbach and Till Mossakowski and Uni Bremen 2004
License : GPLv2 or higher
Maintainer : M.Roggenbach@swansea.ac.uk
Stability : provisional
Portability : portable
signatures for CSP-CASL
-}
module CspCASL.SignCSP where
import CspCASL.AS_CspCASL_Process (CHANNEL_NAME, PROCESS_NAME,
PROCESS (..), CommAlpha, CommType (..), TypedChanName (..))
import CspCASL.AS_CspCASL ()
import CspCASL.CspCASL_Keywords
import CspCASL.Print_CspCASL ()
import CASL.AS_Basic_CASL (CASLFORMULA, SORT, TERM)
import CASL.Sign (CASLSign, emptySign, Sign, extendedInfo, sortRel)
import Common.AS_Annotation (Named)
import Common.Doc
import Common.DocUtils
import Common.Id
import Common.Lib.Rel (predecessors)
import qualified Data.Map as Map
import qualified Data.Set as Set
-- | A process has zero or more parameter sorts, and a communication
-- alphabet.
data ProcProfile = ProcProfile [SORT] CommAlpha
deriving (Eq, Ord, Show)
type ChanNameMap = Map.Map CHANNEL_NAME SORT
type ProcNameMap = Map.Map PROCESS_NAME ProcProfile
type ProcVarMap = Map.Map SIMPLE_ID SORT
type ProcVarList = [(SIMPLE_ID, SORT)]
-- Close a communication alphabet under CASL subsort
closeCspCommAlpha :: CspCASLSign -> CommAlpha -> CommAlpha
closeCspCommAlpha sig =
Set.unions . Set.toList . Set.map (closeOneCspComm sig)
-- Close one CommType under CASL subsort
closeOneCspComm :: CspCASLSign -> CommType -> CommAlpha
closeOneCspComm sig x = let
mkTypedChan c s = CommTypeChan $ TypedChanName c s
subsorts s' =
Set.singleton s' `Set.union` predecessors (sortRel sig) s'
in case x of
CommTypeSort s ->
Set.map CommTypeSort (subsorts s)
CommTypeChan (TypedChanName c s) ->
Set.map CommTypeSort (subsorts s)
`Set.union` Set.map (mkTypedChan c) (subsorts s)
{- Will probably be useful, but doesn't appear to be right now.
-- Extract the sorts from a process alphabet
procAlphaSorts :: CommAlpha -> Set.Set SORT
procAlphaSorts a = stripMaybe $ Set.map justSort a
where justSort n = case n of
(CommTypeSort s) -> Just s
_ -> Nothing
-- Extract the typed channel names from a process alphabet
procAlphaChans :: CommAlpha -> Set.Set TypedChanName
procAlphaChans a = stripMaybe $ Set.map justChan a
where justChan n = case n of
(CommTypeChan c) -> Just c
_ -> Nothing
-- Given a set of Maybes, filter to keep only the Justs
stripMaybe :: Ord a => Set.Set (Maybe a) -> Set.Set a
stripMaybe x = Set.fromList $ Maybe.catMaybes $ Set.toList x
-- Close a set of sorts under a subsort relation
cspSubsortCloseSorts :: CspCASLSign -> Set.Set SORT -> Set.Set SORT
cspSubsortCloseSorts sig sorts =
Set.unions subsort_sets
where subsort_sets =
Set.toList $ Set.map (cspSubsortPreds sig) sorts
-}
-- | CSP process signature.
data CspSign = CspSign
{ chans :: ChanNameMap
, procSet :: ProcNameMap
-- | Added for uniformity to the CASL static analysis. After
-- static analysis this is the empty list.
, ccSentences :: [Named CspCASLSen]
} deriving (Eq, Ord, Show)
-- | I dont know if this is implemented correctly. Always prefers sign1 if there
-- are clashes in chans or procSet. BUG?
cspSignUnion :: CspSign -> CspSign -> CspSign
cspSignUnion sign1 sign2 =
CspSign { chans = Map.union (chans sign1) (chans sign2)
, procSet = Map.union (procSet sign1) (procSet sign2)
, ccSentences = ccSentences sign1 ++ ccSentences sign2
}
-- | A CspCASL signature is a CASL signature with a CSP process
-- signature in the extendedInfo part.
type CspCASLSign = Sign () CspSign
ccSig2CASLSign :: CspCASLSign -> CASLSign
ccSig2CASLSign sigma = sigma { extendedInfo = () }
-- | Projection from CspCASL signature to Csp signature
ccSig2CspSign :: CspCASLSign -> CspSign
ccSig2CspSign = extendedInfo
-- | Empty CspCASL signature.
emptyCspCASLSign :: CspCASLSign
emptyCspCASLSign = emptySign emptyCspSign
-- | Empty CSP process signature.
emptyCspSign :: CspSign
emptyCspSign = CspSign
{ chans = Map.empty
, procSet = Map.empty
, ccSentences = []
}
-- | Compute union of two CSP process signatures.
addCspProcSig :: CspSign -> CspSign -> CspSign
addCspProcSig a b = emptyCspSign
{ chans = chans a `Map.union` chans b
, procSet = procSet a `Map.union` procSet b
}
-- | Compute difference of two CSP process signatures.
diffCspProcSig :: CspSign -> CspSign -> CspSign
diffCspProcSig a b = emptyCspSign
{ chans = chans a `Map.difference` chans b
, procSet = procSet a `Map.difference` procSet b
}
-- | Is one Csp Signature a sub signature of another
isCspSubSign :: CspSign -> CspSign -> Bool
isCspSubSign a b =
chans a `Map.isSubmapOf` chans b &&
procSet a `Map.isSubmapOf` procSet b
-- | Pretty printing for CspCASL signatures
instance Pretty CspSign where
pretty = printCspSign
printCspSign :: CspSign -> Doc
printCspSign sigma =
chan_part $+$ proc_part
where chan_part =
case Map.size $ chans sigma of
0 -> empty
s -> keyword (if s > 1 then channelsS else channelS)
<+> printChanNameMap (chans sigma)
proc_part = keyword processS <+>
printProcNameMap (procSet sigma)
-- | Pretty printing for channel name maps
instance Pretty ChanNameMap where
pretty = printChanNameMap
printChanNameMap :: ChanNameMap -> Doc
printChanNameMap chanMap =
vcat $ punctuate semi $ map printChan $ Map.toList chanMap
where printChan (chanName, sort) =
pretty chanName <+> colon <+> pretty sort
-- | Pretty printing for process name maps
instance Pretty ProcNameMap where
pretty = printProcNameMap
printProcNameMap :: ProcNameMap -> Doc
printProcNameMap procNameMap =
vcat $ punctuate semi $ map printProcName $ Map.toList procNameMap
where printProcName (procName, procProfile) =
pretty procName <+> pretty procProfile
-- | Pretty printing for process profiles
instance Pretty ProcProfile where
pretty = printProcProfile
printProcProfile :: ProcProfile -> Doc
printProcProfile (ProcProfile sorts commAlpha) =
printArgs sorts <+> colon <+> ppWithCommas (Set.toList commAlpha)
where printArgs [] = empty
printArgs args = parens $ ppWithCommas args
-- Sentences
-- | FQProcVarList should only contain fully qualified CASL variables which are
-- | TERMs i.e. constructed via the TERM constructor Qual_var.
type FQProcVarList = [TERM ()]
-- | A CspCASl senetence is either a CASL formula or a Procsses equation. A
-- | process equation has on the LHS a process name, a list of parameters which
-- | are qualified variables (which are terms), a constituent( or is it
-- | permitted ?) communication alphabet and finally on the RHS a fully
-- | qualified process.
data CspCASLSen
= CASLSen (CASLFORMULA)
| ProcessEq PROCESS_NAME FQProcVarList CommAlpha PROCESS
deriving (Show, Eq, Ord)
instance GetRange CspCASLSen
instance Pretty CspCASLSen where
pretty (CASLSen f) = pretty f
pretty (ProcessEq pn varList _commAlpha proc) =
let varDoc = if null varList
then empty
else parens $ ppWithCommas varList
in pretty pn <+> varDoc <+> equals <+> pretty proc
-- | Empty CspCASL sentence
emptyCCSen :: CspCASLSen
emptyCCSen =
let emptyProcName = mkSimpleId "empty"
emptyVarList = []
emptyAlphabet = Set.empty
emptyProc = Skip nullRange
-- BUG - this is incorrect
in ProcessEq emptyProcName emptyVarList emptyAlphabet emptyProc
-- | Test if a CspCASL sentence is a CASL sentence
isCASLSen :: CspCASLSen -> Bool
isCASLSen (CASLSen _) = True
isCASLSen _ = False
-- | Test if a CspCASL sentence is a Process Equation.
isProcessEq :: CspCASLSen -> Bool
isProcessEq (ProcessEq _ _ _ _) = True
isProcessEq _ = False