Cross Reference: /hets/Comorphisms/SuleCFOL2SoftFOL.hs
SuleCFOL2SoftFOL.hs revision 3d86f079b07a6a058cdd6c112d287e01a69d9c0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Description : Coding of a CASL subset into SoftFOL
Copyright : (c) Klaus Luettich and Uni Bremen 2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The translating comorphism from a CASL subset to SoftFOL.
-}
module Comorphisms.SuleCFOL2SoftFOL
( suleCFOL2SoftFOL
, suleCFOL2SoftFOLInduction
, suleCFOL2SoftFOLInduction2
) where
import Control.Exception (assert)
import Control.Monad (foldM)
import Logic.Logic as Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Id
import Common.Result
import Common.DocUtils
import Common.ProofTree
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.MapSet as MapSet
import Text.ParserCombinators.Parsec
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.List as List
import Data.Maybe
import Data.Char
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sublogic as SL
import CASL.Sign as CSign
import CASL.Morphism
import CASL.Quantification
import CASL.Overload
import CASL.Utils
import CASL.Inject
import CASL.Induction (generateInductionLemmas)
import CASL.Simplify
import CASL.ToDoc
import SoftFOL.Sign as SPSign
import SoftFOL.Logic_SoftFOL
import SoftFOL.Translate
import SoftFOL.ParseTPTP
data PlainSoftFOL = PlainSoftFOL
instance Show PlainSoftFOL where
show PlainSoftFOL = "SoftFOL"
data SoftFOLInduction = SoftFOLInduction deriving Show
data SoftFOLInduction2 = SoftFOLInduction2 deriving Show
-- | The identity of the comorphisms
data GenSuleCFOL2SoftFOL a = GenSuleCFOL2SoftFOL a deriving Show
suleCFOL2SoftFOL :: GenSuleCFOL2SoftFOL PlainSoftFOL
suleCFOL2SoftFOL = GenSuleCFOL2SoftFOL PlainSoftFOL
suleCFOL2SoftFOLInduction :: GenSuleCFOL2SoftFOL SoftFOLInduction
suleCFOL2SoftFOLInduction = GenSuleCFOL2SoftFOL SoftFOLInduction
suleCFOL2SoftFOLInduction2 :: GenSuleCFOL2SoftFOL SoftFOLInduction2
suleCFOL2SoftFOLInduction2 = GenSuleCFOL2SoftFOL SoftFOLInduction2
-- | SoftFOL theories
type SoftFOLTheory = (SPSign.Sign, [Named SPTerm])
data CType = CSort
| CVar SORT
| CPred CSign.PredType
| COp CSign.OpType
deriving (Eq, Ord, Show)
toCKType :: CType -> CKType
toCKType ct = case ct of
CSort -> CKSort
CVar _ -> CKVar
CPred _ -> CKPred
COp _ -> CKOp
-- | CASL Ids with Types mapped to SPIdentifier
type IdTypeSPIdMap = Map.Map Id (Map.Map CType SPIdentifier)
-- | specialized lookup for IdTypeSPIdMap
lookupSPId :: Id -> CType -> IdTypeSPIdMap ->
Maybe SPIdentifier
lookupSPId i t = maybe Nothing (Map.lookup t) . Map.lookup i
-- | specialized insert (with error) for IdTypeSPIdMap
insertSPId :: Id -> CType ->
SPIdentifier ->
IdTypeSPIdMap ->
IdTypeSPIdMap
insertSPId i t spid m =
assert (checkIdentifier (toCKType t) $ show spid) $
Map.insertWith (Map.unionWith err) i (Map.insert t spid Map.empty) m
where err = error ("SuleCFOL2SoftFOL: for Id \"" ++ show i ++
"\" the type \"" ++ show t ++
"\" can't be mapped to different SoftFOL identifiers")
deleteSPId :: Id -> CType ->
IdTypeSPIdMap ->
IdTypeSPIdMap
deleteSPId i t m =
maybe m (\ m2 -> let m2' = Map.delete t m2
in if Map.null m2'
then Map.delete i m
else Map.insert i m2' m) $
Map.lookup i m
-- | specialized elems into a set for IdTypeSPIdMap
elemsSPIdSet :: IdTypeSPIdMap -> Set.Set SPIdentifier
elemsSPIdSet = Map.fold (\ m res -> Set.union res
(Set.fromList (Map.elems m)))
Set.empty
-- extended signature translation
type SignTranslator f e = CSign.Sign f e -> e -> SoftFOLTheory -> SoftFOLTheory
-- extended signature translation for CASL
sigTrCASL :: SignTranslator () ()
sigTrCASL _ _ = id
-- extended formula translation
type FormulaTranslator f e =
CSign.Sign f e -> IdTypeSPIdMap -> f -> SPTerm
-- extended formula translation for CASL
formTrCASL :: FormulaTranslator () ()
formTrCASL _ _ = error "SuleCFOL2SoftFOL: No extended formulas allowed in CASL"
instance Show a => Language (GenSuleCFOL2SoftFOL a) where
language_name (GenSuleCFOL2SoftFOL a) = "CASL2" ++ show a
instance Show a => Comorphism (GenSuleCFOL2SoftFOL a)
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
CSign.Symbol RawSymbol ProofTree
SoftFOL () () SPTerm () ()
SPSign.Sign
SoftFOLMorphism SFSymbol () ProofTree where
sourceLogic (GenSuleCFOL2SoftFOL _) = CASL
sourceSublogic (GenSuleCFOL2SoftFOL a) = SL.cFol
{ sub_features = LocFilSub
, cons_features = emptyMapConsFeature
, has_empty_sorts = show a == show PlainSoftFOL }
targetLogic (GenSuleCFOL2SoftFOL _) = SoftFOL
mapSublogic cid sl =
if isSubElem sl $ sourceSublogic cid
then Just () else Nothing
map_theory (GenSuleCFOL2SoftFOL a) = transTheory sigTrCASL formTrCASL
. case show a of
str | str == show SoftFOLInduction -> generateInductionLemmas True
| str == show SoftFOLInduction2 -> generateInductionLemmas False
| otherwise -> id
map_sentence (GenSuleCFOL2SoftFOL _) sign =
return . mapSen (isSingleSorted sign) formTrCASL sign
extractModel (GenSuleCFOL2SoftFOL _) = extractCASLModel
has_model_expansion (GenSuleCFOL2SoftFOL _) = True
-- -------------------------- Signature -----------------------------
transFuncMap :: IdTypeSPIdMap ->
CSign.Sign e f ->
(FuncMap, IdTypeSPIdMap)
transFuncMap idMap sign = Map.foldWithKey toSPOpType (Map.empty, idMap)
. MapSet.toMap $ CSign.opMap sign
where toSPOpType iden typeSet (fm, im) =
if not (Set.null typeSet) && Set.null (Set.deleteMin typeSet) then
let oType = Set.findMin typeSet
sid' = sid fm oType
in (Map.insert sid' (Set.singleton (transOpType oType)) fm,
insertSPId iden (COp oType) sid' im)
else Set.fold insOIdSet (fm, im) $
partOverload (leqF sign)
(partArities (length . CSign.opArgs) typeSet)
where insOIdSet tset (fm', im') =
let sid' = sid fm' (Set.findMax tset)
in (Map.insert sid' (Set.map transOpType tset) fm',
Set.fold (\ x -> insertSPId iden (COp x) sid')
im' tset)
sid fma t = disSPOId CKOp (transId CKOp iden)
(uType (transOpType t))
(Set.union (Map.keysSet fma)
(elemsSPIdSet idMap))
uType t = fst t ++ [snd t]
-- 1. devide into sets with different arities
partArities :: (Ord a) => (a -> Int) -> Set.Set a -> Set.Set (Set.Set a)
partArities len = part 0 Set.empty
where part i acc s
| Set.null s = acc
| otherwise =
case Set.partition (\ x -> len x == i) s of
(ar_i, rest) ->
part (i + 1) (if Set.null ar_i
then acc
else Set.insert ar_i acc) rest
partOverload :: Ord a => (a -> a -> Bool) -> Set.Set (Set.Set a)
-> Set.Set (Set.Set a)
partOverload leq =
Set.fold (Set.union . Set.fromList . Rel.partSet leq) Set.empty
transPredMap :: IdTypeSPIdMap ->
CSign.Sign e f ->
(SPSign.PredMap, IdTypeSPIdMap, [Named SPTerm])
transPredMap idMap sign =
Map.foldWithKey toSPPredType (Map.empty, idMap, []) . MapSet.toMap
$ CSign.predMap sign
where toSPPredType iden typeSet (fm, im, sen) =
if not (Set.null typeSet) && Set.null (Set.deleteMin typeSet) then
let pType = Set.findMin typeSet
sid' = sid fm pType
in (Map.insert sid' (Set.singleton (transPredType pType)) fm
, insertSPId iden (CPred pType) sid' im
, sen)
else case -- genPredImplicationDisjunctions sign $
partOverload (leqP sign)
(Set.singleton typeSet) of
(splitTySet) ->
let (fm', im') =
Set.fold insOIdSet (fm, im) splitTySet
in (fm', im', sen)
where insOIdSet tset (fm', im') =
let sid' = sid fm' (Set.findMax tset)
in (Map.insert sid' (Set.map transPredType tset) fm',
Set.fold (\ x -> insertSPId iden (CPred x) sid')
im' tset)
sid fma t = disSPOId CKPred (transId CKPred iden)
(transPredType t)
(Set.union (Map.keysSet fma)
(elemsSPIdSet idMap))
{- left typing implies right typing; explicit overloading sentences
are generated from these pairs, type TypePair = (CType,CType) -}
-- | disambiguation of SoftFOL Identifiers
disSPOId :: CKType -- ^ Type of CASl identifier
-> SPIdentifier -- ^ translated CASL Identifier
-> [SPIdentifier] {- ^ translated Sort Symbols of the profile
(maybe empty) -}
-> Set.Set SPIdentifier -- ^ SoftFOL Identifiers already in use
-> SPIdentifier {- ^ fresh Identifier generated from second argument;
if the identifier was not in the set this is just the second argument -}
disSPOId cType sid ty idSet
| checkIdentifier cType (show sid) && not (lkup $ show sid) = sid
| otherwise = let nSid = disSPOId' $ show sid
in assert (checkIdentifier cType nSid) $ mkSimpleId nSid
where disSPOId' sid'
| not (lkup asid) = asid
| otherwise = addType asid 1
where asid = sid' ++ case cType of
CKSort -> ""
CKVar -> ""
x -> '_' : show (length ty - (case x of
CKOp -> 1
_ -> 0))
addType res n =
let nres = asid ++ '_' : fc n
nres' = nres ++ '_' : show n
in if nres == res
then if nres' == res
then error ("SuleCFOL2SoftFOL: "
++ "cannot calculate"
++ " unambiguous id for "
++ show sid ++ " with type "
++ show ty
++ " and nres = " ++ nres
++ "\n with idSet "
++ show idSet)
else if not (lkup nres')
then nres'
else addType nres (n + 1)
else if not (lkup nres)
then nres
else addType nres (n + 1)
lkup x = Set.member (mkSimpleId x) idSet
fc n = concatMap (take n . show) ty
transOpType :: CSign.OpType -> ([SPIdentifier], SPIdentifier)
transOpType ot = (map transIdSort (CSign.opArgs ot),
transIdSort (CSign.opRes ot))
transPredType :: CSign.PredType -> [SPIdentifier]
transPredType = map transIdSort . CSign.predArgs
-- | translate every Id as Sort
transIdSort :: Id -> SPIdentifier
transIdSort = transId CKSort
integrateGenerated :: IdTypeSPIdMap -> [Named (FORMULA f)] ->
SPSign.Sign ->
Result (IdTypeSPIdMap, SPSign.Sign, [Named SPTerm])
integrateGenerated idMap genSens sign
| null genSens = return (idMap, sign, [])
| otherwise =
case partition isAxiom genSens of
(genAxs, genGoals) ->
case makeGenGoals sign idMap genGoals of
(newPredsMap, idMap', goalsAndSentences) ->
-- makeGens must not invent new sorts
case makeGens sign idMap' genAxs of
Result dias mv ->
maybe (Result dias Nothing)
(\ (spSortMap_makeGens, newOpsMap, idMap'', exhaustSens) ->
let spSortMap' =
Map.union spSortMap_makeGens (SPSign.sortMap sign)
in assert (Map.size spSortMap' ==
Map.size (SPSign.sortMap sign))
(Result dias
(Just (idMap'',
sign { sortMap = spSortMap'
, funcMap =
Map.union (funcMap sign)
newOpsMap
, SPSign.predMap =
Map.union
(SPSign.predMap sign)
newPredsMap},
mkInjSentences idMap' newOpsMap ++
goalsAndSentences ++
exhaustSens))))
mv
makeGenGoals :: SPSign.Sign -> IdTypeSPIdMap -> [Named (FORMULA f)]
-> (SPSign.PredMap, IdTypeSPIdMap, [Named SPTerm])
makeGenGoals sign idMap fs =
let Result _ res = makeGens sign idMap fs
in case res of
Nothing -> (Map.empty, idMap, [])
Just (_, _, idMap', fs') ->
let fs'' = map (\ s -> s {isAxiom = False}) fs'
in (Map.empty, idMap', fs'')
{- Sort_gen_ax as goals only implemented through a hack."
sketch of full implementation :
- invent new predicate P that is supposed to hold on
every x in the (freely) generated sort.
- generate formulas with this predicate for each constructor.
- recursive constructors hold if the predicate holds on the variables
- prove forall x . P(x)
implementation is postponed as this translation does not produce
only one goal, but additional symbols, axioms and a goal
-}
makeGens :: SPSign.Sign -> IdTypeSPIdMap -> [Named (FORMULA f)]
-> Result (SortMap, FuncMap, IdTypeSPIdMap, [Named SPTerm])
{- ^ The list of SoftFOL sentences gives exhaustiveness for
generated sorts with only constant constructors
and\/or subsort injections, by simply translating
such sort generation constraints to disjunctions -}
makeGens sign idMap fs =
case foldl (makeGen sign) (return (Map.empty, idMap, [], [])) fs of
Result ds mv ->
maybe (Result ds Nothing)
(\ (opM, idMap', pairs, exhaustSens) ->
Result ds
(Just (foldr (uncurry Map.insert)
Map.empty pairs,
opM, idMap', exhaustSens)))
mv
makeGen :: SPSign.Sign
-> Result (FuncMap, IdTypeSPIdMap,
[(SPIdentifier, Maybe Generated)], [Named SPTerm])
-> Named (FORMULA f)
-> Result (FuncMap, IdTypeSPIdMap,
[(SPIdentifier, Maybe Generated)], [Named SPTerm])
makeGen sign r@(Result ods omv) nf =
maybe (Result ods Nothing) process omv where
process (oMap, iMap, rList, eSens) = case sentence nf of
Sort_gen_ax constrs free ->
if null mp then (case mapAccumL makeGenP (oMap, iMap, []) srts of
((oMap', iMap', eSens'), genPairs) ->
Result ods (Just (oMap', iMap',
rList ++ genPairs,
eSens ++ eSens')))
else mkError ("Sort generation constraints with " ++
"non-injective sort mappings cannot " ++
"be translated to SoftFOL") mp
where -- compute standard form of sort generation constraints
(srts, ops, mp) = recover_Sort_gen_ax constrs
-- test whether a constructor belongs to a specific sort
hasTheSort s (Qual_op_name _ ot _) = s == res_OP_TYPE ot
hasTheSort _ _ = error "SuleCFOL2SoftFOL.hasTheSort"
mkGen = Just . Generated free . map fst
-- translate constraint for one sort
makeGenP (opM, idMap, exSens) s = ((newOpMap, newIdMap,
exSens ++ eSen ops_of_s s),
(s', mkGen cons))
where ((newOpMap, newIdMap), cons) =
mapAccumL mkInjOp (opM, idMap) ops_of_s
ops_of_s = List.filter (hasTheSort s) ops
s' = fromMaybe (error $ "SuleCFOL2SoftFOL.makeGen: "
++ "No mapping found for '"
++ shows s "'")
(lookupSPId s CSort idMap)
{- is an operation a constant or an injection ?
(we currently can translate only these) -}
isConstorInj o =
nullArgs o || isInjName (opSymbName o)
-- generate sentences for one sort
eSen os s = [ makeNamed (newName s) (SPQuantTerm SPForall
[typedVarTerm var1
$ fromMaybe (error "lookup failed")
(lookupSPId s CSort iMap)] (disj var1 os))
| all isConstorInj os ]
-- generate sentences: compute one disjunct (for one alternative)
mkDisjunct v o@(Qual_op_name _ (Op_type _ args res _) _) =
-- a constant? then just compare with it
case args of
[] -> mkEq (varTerm v) $ varTerm $ transOPSYMB iMap o
{- an injection? then quantify existentially
(for the injection's argument)
since injections are identities, we can leave them out -}
[arg] -> let ta = transIdSort arg in SPQuantTerm SPExists
[ typedVarTerm var2 ta ]
$ mkEq (varTerm v)
$ if Rel.member ta (transIdSort res)
$ SPSign.sortRel sign
then varTerm var2
else compTerm (spSym $ transOPSYMB iMap o) [varTerm var2]
_ -> error "cannot handle ordinary constructors"
mkDisjunct _ _ = error "unqualified operation symbol"
-- make disjunction out of all the alternatives
disj v os = case map (mkDisjunct v) os of
[] -> error "SuleCFOL2SoftFOL: no constructors found"
[x] -> x
xs -> foldl1 mkDisj xs
-- generate enough variables
var = fromJust (find (\ x ->
not (Set.member (mkSimpleId x) usedIds))
("X" : ['X' : show i | i <- [(1 :: Int) ..]]))
var1 = mkSimpleId var
var2 = mkSimpleId $ var ++ "a"
varTerm = simpTerm . spSym
newName s = "ga_exhaustive_generated_sort_" ++ show (pretty s)
usedIds = elemsSPIdSet iMap
nullArgs o = case o of
Qual_op_name _ (Op_type _ args _ _) _ -> null args
_ -> error "SuleCFOL2SoftFOL: wrong constructor"
_ -> r
mkInjOp :: (FuncMap, IdTypeSPIdMap)
-> OP_SYMB
-> ((FuncMap, IdTypeSPIdMap),
(SPIdentifier, ([SPIdentifier], SPIdentifier)))
mkInjOp (opM, idMap) qo@(Qual_op_name i ot _) =
if isInjName i && isNothing lsid
then ((Map.insert i' (Set.singleton (transOpType ot')) opM,
insertSPId i (COp ot') i' idMap),
(i', transOpType ot'))
else ((opM, idMap),
(fromMaybe err lsid,
transOpType ot'))
where i' = disSPOId CKOp (transId CKOp i)
(utype (transOpType ot')) usedNames
ot' = CSign.toOpType ot
lsid = lookupSPId i (COp ot') idMap
usedNames = Map.keysSet opM
err = error ("SuleCFOL2SoftFOL.mkInjOp: Cannot find SPId for '"
++ show qo ++ "'")
utype t = fst t ++ [snd t]
mkInjOp _ _ = error "SuleCFOL2SoftFOL.mkInjOp: Wrong constructor!!"
mkInjSentences :: IdTypeSPIdMap
-> FuncMap
-> [Named SPTerm]
mkInjSentences idMap = Map.foldWithKey genInjs []
where genInjs k tset fs = Set.fold (genInj k) fs tset
genInj k (args, res) =
assert (length args == 1)
. (makeNamed (newName (show k) (show $ head args)
$ show res)
(SPQuantTerm SPForall
[typedVarTerm var $ head args]
(compTerm SPEqual
[compTerm (spSym k)
[simpTerm (spSym var)],
simpTerm (spSym var)])) :)
var = mkSimpleId $
fromJust (find (\ x -> not (Set.member (mkSimpleId x) usedIds))
("Y" : [ 'Y' : show i | i <- [(1 :: Int) ..]]))
newName o a r = "ga_" ++ o ++ '_' : a ++ '_' : r ++ "_id"
usedIds = elemsSPIdSet idMap
{- |
Translate a CASL signature into SoftFOL signature 'SoftFOL.Sign.Sign'.
Before translating, eqPredicate symbols where removed from signature.
-}
transSign :: CSign.Sign f e ->
(SPSign.Sign, IdTypeSPIdMap, [Named SPTerm])
transSign sign = (SPSign.emptySign { SPSign.sortRel =
Rel.map transIdSort (CSign.sortRel sign)
, sortMap = spSortMap
, funcMap = fMap
, SPSign.predMap = pMap
, singleSorted = isSingleSorted sign
}
, idMap''
, predImplications)
where (spSortMap, idMap) =
Set.fold (\ i (sm, im) ->
let sid = disSPOId CKSort (transIdSort i)
[mkSimpleId $ take 20 (cycle "So")]
(Map.keysSet sm)
in (Map.insert sid Nothing sm,
insertSPId i CSort sid im))
(Map.empty, Map.empty)
(CSign.sortSet sign)
(fMap, idMap') = transFuncMap idMap sign
(pMap, idMap'', predImplications) = transPredMap idMap' sign
nonEmptySortSens :: Set.Set SPIdentifier -> SortMap -> [Named SPTerm]
nonEmptySortSens emptySorts sm =
Map.foldWithKey
(\ s _ res ->
if s `Set.member` emptySorts then res else extSen s : res)
[] sm
where extSen s = makeNamed ("ga_non_empty_sort_" ++ show s) $ SPQuantTerm
SPExists [varTerm] $ compTerm (spSym s) [varTerm]
where varTerm = simpTerm $ spSym $ mkSimpleId $ newVar s
newVar s = fromJust $ find (/= show s)
$ "Y" : ['Y' : show i | i <- [(1 :: Int) ..]]
disjointTopSorts :: CSign.Sign f e -> IdTypeSPIdMap -> [Named SPTerm]
disjointTopSorts sign idMap = let
s = CSign.sortSet sign
sl = Rel.partSet (haveCommonSupersorts True sign) s
l = map (\ p -> case keepMinimals1 False sign id $ Set.toList p of
[e] -> e
_ -> error "disjointTopSorts") sl
pairs ls = case ls of
s1 : r -> map (\ s2 -> (s1, s2)) r ++ pairs r
_ -> []
v1 = simpTerm $ spSym $ mkSimpleId "Y1"
v2 = simpTerm $ spSym $ mkSimpleId "Y2"
in map (\ (t1, t2) ->
makeNamed ("disjoint_sorts_" ++ shows t1 "_" ++ show t2) $
SPQuantTerm SPForall
[ compTerm (spSym t1) [v1]
, compTerm (spSym t2) [v2]]
$ compTerm SPNot [mkEq v1 v2]) $ pairs $
map (\ t -> fromMaybe (transIdSort t)
$ lookupSPId t CSort idMap) l
transTheory :: (FormExtension f, Eq f) =>
SignTranslator f e
-> FormulaTranslator f e
-> (CSign.Sign f e, [Named (FORMULA f)])
-> Result SoftFOLTheory
transTheory trSig trForm (sign, sens) =
fmap (trSig sign (CSign.extendedInfo sign))
(case transSign (filterPreds $ foldl insInjOps sign genAxs) of
(tSign, idMap, sign_sens) ->
do (idMap', tSign', sentencesAndGoals) <-
integrateGenerated idMap genSens tSign
let tSignElim = if SPSign.singleSortNotGen tSign'
then tSign' {sortMap = Map.empty} else tSign'
emptySorts = Set.map transIdSort (emptySortSet sign)
return (tSignElim,
sign_sens ++
disjointTopSorts sign idMap' ++
sentencesAndGoals ++
nonEmptySortSens emptySorts (sortMap tSignElim) ++
map (mapNamed (transFORM (singleSortNotGen tSign') eqPreds
sign idMap' trForm))
realSens'))
where (genSens, realSens) =
partition (\ s -> case sentence s of
Sort_gen_ax _ _ -> True
_ -> False) sens
(eqPreds, realSens') = foldl findEqPredicates (Set.empty, []) realSens
(genAxs, _) = partition isAxiom genSens
insInjOps sig s =
case sentence s of
(Sort_gen_ax constrs _) ->
case recover_Sort_gen_ax constrs of
(_, ops, mp) -> assert (null mp) (insertInjOps sig ops)
_ -> error "SuleCFOL2SoftFOL.transTheory.insInjOps"
filterPreds sig =
sig { CSign.predMap = MapSet.difference
(CSign.predMap sig)
(Set.fold (\ pl -> case pl of
Pred_name pn -> MapSet.insert pn (PredType [])
Qual_pred_name pn pt _ ->
MapSet.insert pn $ CSign.toPredType pt)
MapSet.empty eqPreds) }
{- |
Finds definitions (Equivalences) where one side is a binary predicate
and the other side is a built-in equality application (Strong_equation).
The given Named (FORMULA f) is checked for this and if so, will be put
into the set of such predicates.
-}
findEqPredicates :: (Eq f) => (Set.Set PRED_SYMB, [Named (FORMULA f)])
-- ^ previous list of found predicates and valid sentences
-> Named (FORMULA f)
-- ^ sentence to check
-> (Set.Set PRED_SYMB, [Named (FORMULA f)])
findEqPredicates (eqPreds, sens) sen =
case sentence sen of
Quantification Universal var_decl quantFormula _ ->
isEquiv (foldl (\ vList (Var_decl v s _) ->
vList ++ map (\ vl -> (vl, s)) v)
[] var_decl)
quantFormula
_ -> validSens
where
validSens = (eqPreds, sens ++ [sen])
isEquiv vars qf =
{- Exact two variables are checked if they have the same Sort.
If more than two variables should be compared, use foldl. -}
if (length vars == 2) && (snd (head vars) == snd (vars !! 1))
then case qf of
Equivalence f1 f2 _ -> isStrong_eq vars f1 f2
_ -> validSens
else validSens
isStrong_eq vars f1 f2 =
let f1n = case f1 of
Strong_equation _ _ _ -> f1
_ -> f2
f2n = case f1 of
Strong_equation _ _ _ -> f2
_ -> f1
in case f1n of
Strong_equation eq_t1 eq_t2 _ -> case f2n of
Predication eq_pred_symb pterms _ ->
if (Map.toAscList (Map.fromList $ sortedVarTermList pterms)
== Map.toAscList (Map.fromList vars))
&& (Map.toAscList
(Map.fromList $ sortedVarTermList [eq_t1, eq_t2])
== Map.toAscList (Map.fromList vars))
then (Set.insert eq_pred_symb eqPreds, sens)
else validSens
_ -> validSens
_ -> validSens
{- |
Creates a list of (VAR, SORT) out of a list of TERMs. Only Qual_var TERMs
are inserted which will be checked using
'Comorphisms.SuleCFOL2SoftFOL.hasSortedVarTerm'.
-}
sortedVarTermList :: [TERM f] -> [(VAR, SORT)]
sortedVarTermList = mapMaybe hasSortedVarTerm
{- |
Finds a 'CASL.AS_Basic_CASL.Qual_var' term recursively if super term(s) is
'CASL.AS_Basic_CASL.Sorted_term' or 'CASL.AS_Basic_CASL.Cast'.
-}
hasSortedVarTerm :: TERM f -> Maybe (VAR, SORT)
hasSortedVarTerm t = case t of
Qual_var v s _ -> Just (v, s)
Sorted_term tx _ _ -> hasSortedVarTerm tx
Cast tx _ _ -> hasSortedVarTerm tx
_ -> Nothing
-- ---------------------------- Formulas ------------------------------
transOPSYMB :: IdTypeSPIdMap -> OP_SYMB -> SPIdentifier
transOPSYMB idMap ~qo@(Qual_op_name op ot _) =
fromMaybe (error $ "SuleCFOL2SoftFOL.transOPSYMB: unknown op: " ++ show qo)
(lookupSPId op (COp (CSign.toOpType ot)) idMap)
transPREDSYMB :: IdTypeSPIdMap -> PRED_SYMB -> SPIdentifier
transPREDSYMB idMap ~qp@(Qual_pred_name p pt _) = fromMaybe
(error $ "SuleCFOL2SoftFOL.transPREDSYMB: unknown pred: " ++ show qp)
(lookupSPId p (CPred (CSign.toPredType pt)) idMap)
-- | Translate the quantifier
quantify :: QUANTIFIER -> SPQuantSym
quantify q = case q of
Universal -> SPForall
Existential -> SPExists
Unique_existential ->
error "SuleCFOL2SoftFOL: no translation for existential quantification."
transVarTup :: (Set.Set SPIdentifier, IdTypeSPIdMap) ->
(VAR, SORT) ->
((Set.Set SPIdentifier, IdTypeSPIdMap),
(SPIdentifier, SPIdentifier))
{- ^ ((new set of used Ids, new map of Ids to original Ids),
(var as sp_Id, sort as sp_Id)) -}
transVarTup (usedIds, idMap) (v, s) =
((Set.insert sid usedIds,
insertSPId vi (CVar s) sid $ deleteSPId vi (CVar s) idMap)
, (sid, spSort))
where spSort = fromMaybe
(error $ "SuleCFOL2SoftFOL: translation of sort \"" ++
showDoc s "\" not found")
(lookupSPId s CSort idMap)
vi = simpleIdToId v
sid = disSPOId CKVar (transId CKVar vi)
[mkSimpleId $ "_Va_" ++ showDoc s "_Va"]
usedIds
mapSen :: (Eq f, FormExtension f) => Bool
-> FormulaTranslator f e
-> CSign.Sign f e -> FORMULA f -> SPTerm
mapSen siSo trForm sign = transFORM siSo Set.empty sign
((\ (_, x, _) -> x) (transSign sign))
trForm
transFORM :: (Eq f, FormExtension f) => Bool -- ^ single sorted flag
-> Set.Set PRED_SYMB -- ^ list of predicates to substitute
-> CSign.Sign f e
-> IdTypeSPIdMap -> FormulaTranslator f e
-> FORMULA f -> SPTerm
transFORM siSo eqPreds sign i tr phi = transFORMULA siSo sign i tr phi'
where phi' = codeOutConditionalF id
(codeOutUniqueExtF id id
(substEqPreds eqPreds id phi))
transFORMULA :: FormExtension f => Bool -> CSign.Sign f e -> IdTypeSPIdMap
-> FormulaTranslator f e -> FORMULA f -> SPTerm
transFORMULA siSo sign idMap tr form = case form of
Quantification qu vdecl phi _ ->
SPQuantTerm (quantify qu)
vList
(transFORMULA siSo sign idMap' tr phi)
where ((_, idMap'), vList) =
mapAccumL (\ acc e ->
let (acc', e') = transVarTup acc e
in (acc', (if siSo then simpTerm . spSym . fst
else uncurry typedVarTerm)
e'))
(sidSet, idMap) (flatVAR_DECLs vdecl)
sidSet = elemsSPIdSet idMap
Conjunction phis _ -> if null phis then simpTerm SPTrue else
foldl1 mkConj (map (transFORMULA siSo sign idMap tr) phis)
Disjunction phis _ -> if null phis then simpTerm SPFalse else
foldl1 mkDisj (map (transFORMULA siSo sign idMap tr) phis)
Implication phi1 phi2 _ _ -> compTerm SPImplies
[transFORMULA siSo sign idMap tr phi1, transFORMULA siSo sign idMap tr phi2]
Equivalence phi1 phi2 _ -> compTerm SPEquiv
[transFORMULA siSo sign idMap tr phi1, transFORMULA siSo sign idMap tr phi2]
Negation phi _ -> compTerm SPNot [transFORMULA siSo sign idMap tr phi]
True_atom _ -> simpTerm SPTrue
False_atom _ -> simpTerm SPFalse
Predication psymb args _ -> compTerm (spSym (transPREDSYMB idMap psymb))
(map (transTERM siSo sign idMap tr) args)
Existl_equation t1 t2 _ -> -- sortOfTerm t1 == sortOfTerm t2
mkEq (transTERM siSo sign idMap tr t1) (transTERM siSo sign idMap tr t2)
Strong_equation t1 t2 _ -> -- sortOfTerm t1 == sortOfTerm t2
mkEq (transTERM siSo sign idMap tr t1) (transTERM siSo sign idMap tr t2)
ExtFORMULA phi -> tr sign idMap phi
Definedness _ _ -> simpTerm SPTrue -- assume totality
Membership t s _ -> if siSo then simpTerm SPTrue else
maybe (error ("SuleCFOL2SoftFOL.tF: no SoftFOL Id found for \"" ++
showDoc s "\""))
(\ si -> compTerm (spSym si) [transTERM siSo sign idMap tr t])
(lookupSPId s CSort idMap)
Sort_gen_ax _ _ ->
error "SuleCFOL2SoftFOL.transFORMULA: Sort_gen_ax"
_ -> error
("SuleCFOL2SoftFOL.transFORMULA: unknown FORMULA '" ++ showDoc form "'")
transTERM :: FormExtension f => Bool -> CSign.Sign f e -> IdTypeSPIdMap
-> FormulaTranslator f e -> TERM f -> SPTerm
transTERM siSo sign idMap tr term = case term of
Qual_var v s _ -> maybe
(error
("SuleCFOL2SoftFOL.tT: no SoftFOL Id found for \"" ++ showDoc v "\""))
(simpTerm . spSym) (lookupSPId (simpleIdToId v) (CVar s) idMap)
Application opsymb args _ ->
compTerm (spSym (transOPSYMB idMap opsymb))
(map (transTERM siSo sign idMap tr) args)
Conditional _t1 _phi _t2 _ ->
error "SuleCFOL2SoftFOL.transTERM: Conditional terms must be coded out."
Sorted_term t _s _ -> -- sortOfTerm t isSubsortOf s
transTERM siSo sign idMap tr t
Cast t _s _ -> -- s isSubsortOf sortOfTerm t
transTERM siSo sign idMap tr t
_ -> error ("SuleCFOL2SoftFOL.transTERM: unknown TERM '" ++ showDoc term "'")
isSingleSorted :: CSign.Sign f e -> Bool
isSingleSorted sign =
Set.size (CSign.sortSet sign) == 1
&& Set.null (emptySortSet sign) -- empty sorts need relativization
-- * extract model out of darwin output stored in a proof tree
extractCASLModel :: CASLSign -> ProofTree
-> Result (CASLSign, [Named (FORMULA ())])
extractCASLModel sign (ProofTree output) =
case parse tptpModel "" output of
Right rfs -> do
let (_, idMap, _) = transSign sign
rMap = getSignMap idMap
(rs, fs1) = partition ((== "interpretation_atoms") . fst) rfs
(ds, fs2) = partition ((== "interpretation_domain") . fst) fs1
(dds, fs3) = partition
((== "interpretation_domain_distinct") . fst) fs2
(es, nm0) = foldl (\ (l, m) (_, s) -> let
(e, m2) = typeCheckForm False sign m s
in (l ++ e, m2)) ([], rMap) rs
nm = foldl (\ m (_, s) -> snd $ typeCheckForm True sign m s) nm0
$ fs3 ++ ds ++ dds
nops = Map.filter (\ v -> case v of
(COp _, Nothing) -> True
_ -> False) nm
os = opMap sign
nos = foldr (\ (i, ~(COp ot, _)) -> addOpTo (simpleIdToId i) ot) os
$ Map.toList nops
nsign = sign { opMap = nos }
mkWarn s = Diag Warning s nullRange
doms <- mapM (\ (n, f) -> do
diss <- getDomElems f
nf <- createDomain sign nm diss
return $ makeNamed n nf) ds
distfs <- mapM (\ (n, f) -> do
let fs = splitConjs f
ets = map (fst . typeCheckForm False sign nm) fs
cs = filter (null . fst) $ zip ets fs
dts <- foldM getUneqElems Set.empty fs
let ws = concatMap ((\ (s, _, _) -> s)
. typeCheckTerm sign Nothing nm)
$ Set.toList dts
Result (map mkWarn ws) $ Just ()
tfs <- mapM (toForm nsign nm . snd) cs
return $ makeNamed n $ simplifyFormula id $ conjunct tfs) dds
terms <- mapM (\ (n, f) -> do
let fs = splitConjs f
ets = map (fst . typeCheckForm False sign nm) fs
(cs, ws) = partition (null . fst) $ zip ets fs
Result (map mkWarn $ concatMap fst ws) $ Just ()
tfs <- mapM (toForm nsign nm . snd) cs
return $ makeNamed n $ simplifyFormula id $ conjunct tfs) fs3
sens <- mapM (\ (n, f) -> do
cf <- toForm nsign nm f
return $ makeNamed n $ simplifyFormula id cf) rs
Result (map mkWarn es) $ Just ()
return (nsign, doms ++ distfs ++ terms ++ sens)
Left err -> fail $ showErr err
type RMap = Map.Map SPIdentifier (CType, Maybe Id)
getSignMap :: IdTypeSPIdMap -> RMap
getSignMap =
foldr (\ (i, m) g -> foldr (\ (t, s) -> case t of
CSort -> Map.insert s (CPred $ PredType [i], Nothing)
_ -> Map.insert s (t, Just i)) g $ Map.toList m)
Map.empty . Map.toList
splitConjs :: SPTerm -> [SPTerm]
splitConjs trm = case trm of
SPComplexTerm SPAnd args ->
concatMap splitConjs args
_ -> [trm]
getUneqElems :: Set.Set SPTerm -> SPTerm -> Result (Set.Set SPTerm)
getUneqElems s trm = case trm of
SPComplexTerm SPNot [SPComplexTerm SPEqual [a1, a2]] ->
return $ Set.insert a2 $ Set.insert a1 s
_ -> fail $ "unexpected disjointness formula: " ++ showDoc trm ""
splitDisjs :: SPTerm -> [SPTerm]
splitDisjs trm = case trm of
SPComplexTerm SPOr args ->
concatMap splitDisjs args
_ -> [trm]
getDomElems :: SPTerm -> Result [SPTerm]
getDomElems trm = case trm of
SPQuantTerm SPForall [var] frm ->
mapM (\ t -> case t of
SPComplexTerm SPEqual [a1, a2]
| var == a1 -> return a2
| var == a2 -> return a1
_ -> fail $ "expecting equation with " ++ show var
++ ", got: " ++ showDoc t "") $ splitDisjs frm
_ -> fail $ "expecting simple quantified disjunction, got: "
++ showDoc trm ""
createDomain :: CASLSign -> RMap -> [SPTerm] -> Result (FORMULA ())
createDomain sign m l = do
let es = map ((\ (e, _, s) -> (e, s)) . typeCheckTerm sign Nothing m) l
tys <- mapM (\ (e, ms) -> case ms of
Just s -> return s
_ -> fail $ unlines e) es
cs <- mapM (\ ds -> do
ts@(trm : r) <- mapM (toTERM m . snd) ds
let mtys = keepMinimals sign id . Set.toList . foldl1 Set.intersection
$ map (\ (ty, _) -> Set.insert ty $ supersortsOf ty sign) ds
case mtys of
[] -> fail $ "no common supersort found for: " ++ showDoc ds ""
ty : _ -> do
let v = mkVarDeclStr "X" ty
return $ mkForall [v]
$ if null r then mkStEq (toQualVar v) trm else
disjunct $ map (mkStEq $ toQualVar v) ts)
. Rel.partList
(\ p1 p2 -> haveCommonSupersorts True sign (fst p1) $ fst p2)
$ zip tys l
return $ conjunct cs
typeCheckForm :: Bool -> CASLSign -> RMap -> SPTerm -> ([String], RMap)
typeCheckForm rev sign m trm =
let srts = sortSet sign
aty = if Set.size srts == 1 then Just $ Set.findMin srts else Nothing
in case trm of
SPQuantTerm _ vars frm -> let
vs = concatMap getVars vars
rm = foldr Map.delete m vs
(errs, nm) = typeCheckForm rev sign rm frm
m2 = foldr Map.delete nm vs
in (errs, Map.union m m2)
SPComplexTerm SPEqual [a1, a2] -> let
(r1, m1, ety) = typeCheckEq sign aty m a1 a2
in case ety of
Nothing -> (r1, m1)
Just _ -> let
(r2, m2, _) = typeCheckEq sign ety m1 a2 a1
in (r2, m2)
SPComplexTerm (SPCustomSymbol cst) args ->
case Map.lookup cst m of
Just (CPred pt, _) | length args == length (predArgs pt) ->
foldl (\ (b, p) (s, a) -> let
(nb, nm, _) = typeCheckTerm sign (Just s) p a
in (b ++ nb, nm))
([], m) $ zip (predArgs pt) args
_ -> (["unknown predicate: " ++ show cst], m)
SPComplexTerm _ args ->
foldl (\ (b, p) a -> let
(nb, nm) = typeCheckForm rev sign p a
in (b ++ nb, nm)) ([], m) $ if rev then reverse args else args
typeCheckEq :: CASLSign -> Maybe SORT -> RMap -> SPTerm -> SPTerm
-> ([String], RMap, Maybe SORT)
typeCheckEq sign aty m a1 a2 = let
(r1, m1, ty1) = typeCheckTerm sign aty m a1
(r2, m2, ty2) = typeCheckTerm sign aty m1 a2
in case (ty1, ty2) of
(Just s1, Just s2) ->
(r1 ++ r2
++ [ "different types " ++ show (s1, s2) ++ " in equation: "
++ showDoc a1 " = " ++ showDoc a2 ""
| not $ haveCommonSupersorts True sign s1 s2], m2, Nothing)
(Nothing, _) -> (r1, m2, ty2)
(_, Nothing) -> (r1 ++ r2, m2, ty1)
typeCheckTerm :: CASLSign -> Maybe SORT -> RMap -> SPTerm
-> ([String], RMap, Maybe SORT)
typeCheckTerm sign ty m trm =
let srts = sortSet sign
aty = if Set.size srts == 1 then Just $ Set.findMin srts else Nothing
in case trm of
SPComplexTerm (SPCustomSymbol cst) args -> case Map.lookup cst m of
Nothing -> let
(fb, fm, aTys) = foldr (\ a (b, p, tys) -> let
(nb, nm, tya) = typeCheckTerm sign aty p a
in (b ++ nb, nm, tya : tys)) ([], m, []) args
in case ty of
Just r | all isJust aTys ->
if null args && isVar cst then
(fb, Map.insert cst (CVar r, Nothing) fm, ty)
else (fb, Map.insert cst
(COp $ mkTotOpType (catMaybes aTys) r, Nothing) fm
, ty)
_ -> (["no type for: " ++ showDoc trm ""], fm, ty)
Just (COp ot, _) -> let
aTys = opArgs ot
rTy = opRes ot
(fb, fm) = foldl (\ (b, p) (s, a) -> let
(nb, nm, _) = typeCheckTerm sign (Just s) p a
in (b ++ nb, nm)) ([], m) $ zip aTys args
aTyL = length aTys
argL = length args
in (fb ++
["expected " ++ show aTyL ++ " arguments, but found "
++ show argL ++ " for: " ++ show cst | aTyL /= argL]
++ case ty of
Just r -> ["expected result sort " ++ show r ++ ", but found "
++ show rTy ++ " for: " ++ show cst | not $ leqSort sign rTy r ]
_ -> [], fm, Just rTy)
Just (CVar s2, _) ->
(["unexpected arguments for variable: " ++ show cst | not $ null args]
++ case ty of
Just r -> ["expected variable sort " ++ show r ++ ", but found "
++ show s2 ++ " for: " ++ show cst | not $ leqSort sign s2 r ]
_ -> [], m, Just s2)
_ -> (["unexpected predicate in term: " ++ showDoc trm ""], m, ty)
_ -> (["unexpected term: " ++ showDoc trm ""], m, ty)
toForm :: Monad m => CASLSign -> RMap -> SPTerm -> m (FORMULA ())
toForm sign m t = case t of
SPQuantTerm q vars frm -> do
let vs = concatMap getVars vars
rm = foldr Map.delete m vs
(b, nm) = typeCheckForm False sign rm frm
nvs = mapMaybe (toVar nm) vars
nf <- toForm sign nm frm
if null b then return $ Quantification (toQuant q) nvs nf nullRange
else fail $ unlines b
SPComplexTerm SPEqual [a1, a2] -> do
t1 <- toTERM m a1
t2 <- toTERM m a2
return $ mkStEq t1 t2
SPComplexTerm (SPCustomSymbol cst) args ->
case Map.lookup cst m of
Just (CPred pt, mi) | length args == length (predArgs pt) -> do
ts <- mapM (toTERM m) args
case mi of
Nothing -> case args of
[_] -> return (True_atom nullRange)
_ -> fail $ "unkown predicate: " ++ show cst
Just i -> return (Predication
(Qual_pred_name i (toPRED_TYPE pt) nullRange)
ts nullRange)
_ -> fail $ "inconsistent pred symbol: " ++ show cst
SPComplexTerm symb args -> do
fs <- mapM (toForm sign m) args
case (symb, fs) of
(SPNot, [f]) -> return (Negation f nullRange)
(SPImplies, [f1, f2]) -> return (mkImpl f1 f2)
(SPImplied, [f2, f1]) -> return (Implication f1 f2 False nullRange)
(SPEquiv, [f1, f2]) -> return (mkEqv f1 f2)
(SPAnd, _) -> return (conjunct fs)
(SPOr, _) -> return (Disjunction fs nullRange)
(SPTrue, []) -> return (True_atom nullRange)
(SPFalse, []) -> return (False_atom nullRange)
_ -> fail $ "wrong boolean formula: " ++ showDoc t ""
toTERM :: Monad m => RMap -> SPTerm -> m (TERM ())
toTERM m spt = case spt of
SPComplexTerm (SPCustomSymbol cst) args -> case Map.lookup cst m of
Just (CVar s, _) | null args -> return $ Qual_var cst s nullRange
Just (COp ot, mi) | length args == length (opArgs ot) -> do
ts <- mapM (toTERM m) args
return $ Application (Qual_op_name (case mi of
Just i -> i
_ -> simpleIdToId cst) (toOP_TYPE ot) nullRange)
ts nullRange
_ -> fail $ "cannot reconstruct term: " ++ showDoc spt ""
_ -> fail $ "cannot reconstruct term: " ++ showDoc spt ""
toQuant :: SPQuantSym -> QUANTIFIER
toQuant sp = case sp of
SPForall -> Universal
SPExists -> Existential
_ -> error "toQuant"
toVar :: Monad m => RMap -> SPTerm -> m VAR_DECL
toVar m sp = case sp of
SPComplexTerm (SPCustomSymbol cst) [] | isVar cst -> case Map.lookup cst m of
Just (CVar s, _) -> return $ Var_decl [cst] s nullRange
_ -> fail $ "unknown variable: " ++ show cst
_ -> fail $ "quantified term as variable: " ++ showDoc sp ""
isVar :: SPIdentifier -> Bool
isVar cst = case tokStr cst of
c : _ -> isUpper c
"" -> error "isVar"
getVars :: SPTerm -> [SPIdentifier]
getVars tm = case tm of
SPComplexTerm (SPCustomSymbol cst) args ->
if null args then [cst] else concatMap getVars args
_ -> []