SuleCFOL2SoftFOL.hs revision 1973bcbf4902d92e2fd500455795aaf741e0ba4b
{- |
Module : $Header$
Description : Coding of a CASL subset into SoftFOL
Copyright : (c) Klaus L�ttich and Uni Bremen 2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The translating comorphism from a CASL subset to SoftFOL.
-}
module Comorphisms.SuleCFOL2SoftFOL
(SuleCFOL2SoftFOL(..), SuleCFOL2SoftFOLInduction(..))
where
import Control.Exception
import Logic.Logic as Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Id
import Common.Result
import Common.DocUtils
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Common.Lib.Rel as Rel
import Data.List as List
import Data.Maybe
-- CASL
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sublogic as SL
import CASL.Sign as CSign
import CASL.Morphism
import CASL.Quantification
import CASL.Overload
import CASL.Utils
import CASL.Inject
import CASL.Induction (generateInductionLemmas)
-- SoftFOL
import SoftFOL.Sign as SPSign
import SoftFOL.Logic_SoftFOL
import SoftFOL.Translate
import SoftFOL.Utils
-- | The identity of the comorphisms
data SuleCFOL2SoftFOL = SuleCFOL2SoftFOL deriving (Show)
data SuleCFOL2SoftFOLInduction = SuleCFOL2SoftFOLInduction deriving (Show)
-- | SoftFOL theories
type SoftFOLTheory = (SPSign.Sign,[Named SPTerm])
-- | CASL Ids with Types mapped to SPIdentifier
-- | specialized lookup for IdType_SPId_Map
lookupSPId :: Id -> CType -> IdType_SPId_Map ->
Maybe SPIdentifier
lookupSPId i t m = maybe Nothing (\ m' -> Map.lookup t m') (Map.lookup i m)
-- | specialized insert (with error) for IdType_SPId_Map
insertSPId :: Id -> CType ->
SPIdentifier ->
IdType_SPId_Map ->
IdType_SPId_Map
insertSPId i t spid m =
assert (checkIdentifier t spid) $
where err = error ("SuleCFOL2SoftFOL: for Id \""++show i ++
"\" the type \""++ show t ++
"\" can't be mapped to different SoftFOL identifiers")
deleteSPId :: Id -> CType ->
IdType_SPId_Map ->
IdType_SPId_Map
deleteSPId i t m =
maybe m (\ m2 -> let m2' = Map.delete t m2
in if Map.null m2'
then Map.delete i m
else Map.insert i m2' m) $
Map.lookup i m
-- | specialized elems into a set for IdType_SPId_Map
elemsSPId_Set :: IdType_SPId_Map -> Set.Set SPIdentifier
(Set.fromList (Map.elems m)))
-- extended signature translation
type SignTranslator f e = CSign.Sign f e -> e -> SoftFOLTheory -> SoftFOLTheory
-- extended signature translation for CASL
sigTrCASL :: SignTranslator () ()
sigTrCASL _ _ = id
-- extended formula translation
type FormulaTranslator f e =
CSign.Sign f e -> IdType_SPId_Map -> f -> SPTerm
-- extended formula translation for CASL
formTrCASL :: FormulaTranslator () ()
formTrCASL _ _ = error "SuleCFOL2SoftFOL: No extended formulas allowed in CASL"
instance Language SuleCFOL2SoftFOL -- default definition is okay
instance Language SuleCFOL2SoftFOLInduction -- default definition is okay
instance Comorphism SuleCFOL2SoftFOL
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
CSign.Symbol RawSymbol Q_ProofTree
SoftFOL () () SPTerm () ()
SoftFOLMorphism SFSymbol () SPSign.ATP_ProofTree where
sourceLogic _ = CASL
sourceSublogic _ = SL.cFol
{ sub_features = LocFilSub
, cons_features = emptyMapConsFeature
, has_empty_sorts = True }
targetLogic _ = SoftFOL
mapSublogic cid sl = if sl `isSubElem` sourceSublogic cid
then Just () else Nothing
map_theory _ = transTheory sigTrCASL formTrCASL
map_morphism = mapDefaultMorphism
map_sentence _ sign =
return . mapSen (isSingleSorted sign) formTrCASL sign
has_model_expansion _ = True
instance Comorphism SuleCFOL2SoftFOLInduction
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
CSign.Symbol RawSymbol Q_ProofTree
SoftFOL () () SPTerm () ()
SoftFOLMorphism SFSymbol () SPSign.ATP_ProofTree where
sourceLogic _ = CASL
sourceSublogic _ = SL.cFol
{ sub_features = LocFilSub
, cons_features = emptyMapConsFeature }
targetLogic _ = SoftFOL
mapSublogic cid sl = if sl `isSubElem` sourceSublogic cid
then Just () else Nothing
map_theory _ = transTheory sigTrCASL formTrCASL . generateInductionLemmas
map_morphism = mapDefaultMorphism
map_sentence _ sign =
return . mapSen (isSingleSorted sign) formTrCASL sign
has_model_expansion _ = True
---------------------------- Signature -----------------------------
transFuncMap :: IdType_SPId_Map ->
CSign.Sign e f ->
(FuncMap, IdType_SPId_Map)
transFuncMap idMap sign =
where toSPOpType iden typeSet (fm,im) =
if Set.null typeSet then
error ("SuleCFOL2SoftFOL: empty sets are not "++
"allowed in OpMaps: " ++ show iden)
else if Set.null $ Set.deleteMin typeSet then
let oType = Set.findMin typeSet
sid' = sid fm oType
in (Map.insert sid' (Set.singleton (transOpType oType)) fm,
insertSPId iden (COp oType) sid' im)
else Set.fold insOIdSet (fm,im) $
partOverload (leqF sign)
(partArities (length . CSign.opArgs) typeSet)
where insOIdSet tset (fm',im') =
let sid' = sid fm' (Set.findMax tset)
in (Map.insert sid' (Set.map transOpType tset) fm',
Set.fold (\ x y ->
insertSPId iden (COp x) sid' y)
im' tset)
sid fma t = disSPOId (COp t) (transId (COp t) iden)
(uType (transOpType t))
(Set.union (Map.keysSet fma)
(elemsSPId_Set idMap))
uType t = fst t ++ [snd t]
-- 1. devide into sets with different arities
partArities len = part 0 Set.empty
where part i acc s
| Set.null s = acc
| otherwise =
case Set.partition (\ x -> len x == i) s of
(ar_i,rest) ->
part (i+1) (if Set.null ar_i
then acc
else Set.insert ar_i acc) rest
partOverload :: (Show a,Ord a) => (a -> a -> Bool)
transPredMap :: IdType_SPId_Map ->
CSign.Sign e f ->
(PredMap, IdType_SPId_Map,[Named SPTerm])
transPredMap idMap sign =
where toSPPredType iden typeSet (fm,im,sen) =
if Set.null typeSet then
error ("SuleCFOL2SoftFOL: empty sets are not "++
"allowed in PredMaps: " ++ show iden)
else if Set.null $ Set.deleteMin typeSet then
let pType = Set.findMin typeSet
sid' = sid fm pType
in (Map.insert sid' (Set.singleton (transPredType pType)) fm
, insertSPId iden (CPred pType) sid' im
, sen)
else case -- genPredImplicationDisjunctions sign $
partOverload (leqP sign)
(Set.singleton typeSet) of
(splitTySet) ->
let (fm',im') =
Set.fold insOIdSet (fm,im) splitTySet
in (fm',im',sen)
where insOIdSet tset (fm',im') =
let sid' = sid fm' (Set.findMax tset)
in (Map.insert sid' (Set.map transPredType tset) fm',
Set.fold (\ x y ->
insertSPId iden (CPred x) sid' y)
im' tset)
sid fma t = disSPOId (CPred t) (transId (CPred t) iden)
(transPredType t)
(Set.union (Map.keysSet fma)
(elemsSPId_Set idMap))
-- left typing implies right typing; explicit overloading sentences
-- are generated from these pairs, type TypePair = (CType,CType)
-- | disambiguation of SoftFOL Identifiers
disSPOId :: CType -- ^ Type of CASl identifier
-> SPIdentifier -- ^ translated CASL Identifier
-> [SPIdentifier] -- ^ translated Sort Symbols of the profile
-- (maybe empty)
-> Set.Set SPIdentifier -- ^ SoftFOL Identifiers already in use
-> SPIdentifier -- ^ fresh Identifier generated from second argument;
-- if the identifier was not in the set this is just the second argument
disSPOId cType sid ty idSet
| checkIdentifier cType sid && not (lkup sid) = sid
| otherwise = let nSid = disSPOId' sid
in assert (checkIdentifier cType nSid) nSid
where disSPOId' sid'
| not (lkup asid) = asid
| otherwise = addType asid 1
where asid = sid' ++ case cType of
CSort -> ""
CVar _ -> ""
x -> '_':show (length ty - (case x of
COp _ -> 1
_ -> 0))
addType res n =
let nres = asid ++ '_':fc n
nres' = nres ++ '_':show n
in if nres == res
then if nres' == res
then error ("SuleCFOL2SoftFOL: "
++ "cannot calculate"
++ " unambigous id for "
++ sid ++ " with type " ++ show ty
++ " and nres = "++ nres
++ "\n with idSet "
++ show idSet)
else if not (lkup nres')
then nres'
else addType nres (n+1)
else if not (lkup nres)
then nres
else addType nres (n+1)
lkup x = Set.member x idSet
fc n = concatMap (take n) ty
transOpType :: CSign.OpType -> ([SPIdentifier],SPIdentifier)
transOpType ot = (map transIdSort (CSign.opArgs ot),
transIdSort (CSign.opRes ot))
transPredType :: CSign.PredType -> [SPIdentifier]
transPredType pt = map transIdSort (CSign.predArgs pt)
-- | translate every Id as Sort
transIdSort :: Id -> String
transIdSort = transId CSort
integrateGenerated :: (Pretty f, PosItem f) =>
IdType_SPId_Map -> [Named (FORMULA f)] ->
SPSign.Sign ->
Result (IdType_SPId_Map, SPSign.Sign, [Named SPTerm])
integrateGenerated idMap genSens sign
| null genSens = return (idMap,sign,[])
| otherwise =
case partition isAxiom genSens of
(genAxs,genGoals) ->
case makeGenGoals idMap genGoals of
(newPredsMap,idMap',goalsAndSentences) ->
-- makeGens must not invent new sorts
case makeGens idMap' genAxs of
Result dias mv ->
maybe (Result dias Nothing)
(\ (spSortMap_makeGens,newOpsMap,idMap'',exhaustSens) ->
let spSortMap' =
Map.union spSortMap_makeGens (SPSign.sortMap sign)
in assert (Map.size spSortMap' ==
Map.size (SPSign.sortMap sign))
(Result dias
(Just (idMap'',
sign { sortMap = spSortMap'
, funcMap =
Map.union (funcMap sign)
newOpsMap
, SPSign.predMap =
(SPSign.predMap sign)
newPredsMap},
mkInjSentences idMap' newOpsMap++
goalsAndSentences++
exhaustSens))))
mv
makeGenGoals :: IdType_SPId_Map -> [Named (FORMULA f)]
-> (PredMap, IdType_SPId_Map, [Named SPTerm])
makeGenGoals idMap _ = (Map.empty, idMap, [])
-- Sort_gen_ax as goals not implemented, yet."
{- implementation sketch:
- invent new predicate P that is supposed to hold on
every x in the (freely) generated sort.
- generate formulas with this predicate for each constructor.
- recursive constructors hold if the predicate holds on the variables
- prove forall x . P(x)
implementation is postponed as this translation does not produce
only one goal, but additional symbols, axioms and a goal
-}
makeGens :: (Pretty f, PosItem f) =>
IdType_SPId_Map -> [Named (FORMULA f)]
-> Result (SortMap, FuncMap, IdType_SPId_Map,[Named SPTerm])
-- ^ The list of SoftFOL sentences gives exhaustiveness for
-- generated sorts with only constant constructors
makeGens idMap fs =
case foldl makeGen (return (Map.empty,idMap,[],[])) fs of
Result ds mv ->
maybe (Result ds Nothing)
(\ (opM,idMap',pairs,exhaustSens) ->
Result ds
(Just (foldr (uncurry Map.insert)
Map.empty pairs,
opM,idMap',exhaustSens)))
mv
makeGen :: (Pretty f, PosItem f) =>
Result (FuncMap, IdType_SPId_Map,
[(SPIdentifier,Maybe Generated)],[Named SPTerm])
-> Named (FORMULA f)
-> Result (FuncMap, IdType_SPId_Map,
[(SPIdentifier,Maybe Generated)],[Named SPTerm])
makeGen r@(Result ods omv) nf =
maybe (Result ods Nothing) process omv where
process (oMap,iMap,rList,eSens) = case sentence nf of
Sort_gen_ax constrs free ->
if null mp then (case mapAccumL makeGenP (oMap,iMap,[]) srts of
((oMap',iMap',eSens'),genPairs) ->
Result ods (Just (oMap',iMap',
rList++genPairs,
eSens++eSens')))
else mkError ("Non injective sort mappings cannot " ++
"be translated to SoftFOL") (sentence nf)
where (srts,ops,mp) = recover_Sort_gen_ax constrs
hasTheSort s (Qual_op_name _ ot _) = s == res_OP_TYPE ot
hasTheSort _ _ = error "SuleCFOL2SoftFOL.hasTheSort"
mkGen = Just . Generated free . map fst
makeGenP (opM,idMap,exSens) s = ((newOpMap, newIdMap,
exSens++eSen ops_of_s s),
(s', mkGen cons))
where ((newOpMap,newIdMap),cons) =
mapAccumL mkInjOp (opM,idMap) ops_of_s
ops_of_s = List.filter (hasTheSort s) ops
s' = maybe (error $ "SuleCFOL2SoftFOL.makeGen: "
++ "No mapping found for '"
++ shows s "'") id
(lookupSPId s CSort idMap)
isConstorInj o =
nullArgs o ||
take 7 (show (opSymbName o)) == "gn_inj_"
eSen os s = if all isConstorInj os
then [makeNamed (newName s) (SPQuantTerm SPForall
[typedVarTerm var $
maybe (error "lookup failed")
id
(lookupSPId s (CSort) iMap)]
(disj var os))]
else []
disjunct v o@(Qual_op_name _ (Op_type _ args _ _) _) =
if nullArgs o then mkEq (varTerm v)
(varTerm $ transOP_SYMB iMap o)
else SPQuantTerm SPExists [typedVarTerm var2 $
maybe (error "lookup failed")
id
(lookupSPId (head args) (CSort) iMap)]
(mkEq (varTerm v)
(compTerm (SPCustomSymbol $ transOP_SYMB iMap o) [varTerm var2]))
disjunct _ _ = error "unqualified operation symbol"
disj v os = case map (disjunct v) os of
[] -> error "SuleCFOL2SoftFOL: no constructors found"
[x] -> x
xs -> foldl1 mkDisj xs
var = fromJust (find (\ x -> not (Set.member x usedIds))
("X":["X"++show i | i <- [(1::Int)..]]))
var2 = var++"a"
varTerm v = simpTerm (spSym v)
newName s = "ga_exhaustive_generated_sort_"++(show $ pretty s)
usedIds = elemsSPId_Set iMap
nullArgs o = case o of
Qual_op_name _ (Op_type _ args _ _) _ -> null args
_ -> error "SuleCFOL2SoftFOL: wrong constructor"
_ -> r
mkInjOp :: (FuncMap, IdType_SPId_Map)
-> OP_SYMB
-> ((FuncMap,IdType_SPId_Map),
(SPIdentifier,([SPIdentifier],SPIdentifier)))
mkInjOp (opM,idMap) qo@(Qual_op_name i ot _) =
if isInjName i && isNothing lsid
then ((Map.insert i' (Set.singleton (transOpType ot')) opM,
insertSPId i (COp ot') i' idMap),
(i', transOpType ot'))
else ((opM,idMap),
(maybe err id lsid,
transOpType ot'))
where i' = disSPOId (COp ot') (transId (COp ot') i)
(utype (transOpType ot')) usedNames
ot' = CSign.toOpType ot
lsid = lookupSPId i (COp ot') idMap
usedNames = Map.keysSet opM
err = error ("SuleCFOL2SoftFOL.mkInjOp: Cannot find SPId for '"++
show qo++"'")
utype t = fst t ++ [snd t]
mkInjOp _ _ = error "SuleCFOL2SoftFOL.mkInjOp: Wrong constructor!!"
mkInjSentences :: IdType_SPId_Map
-> FuncMap
-> [Named SPTerm]
mkInjSentences idMap = Map.foldWithKey genInjs []
where genInjs k tset fs = Set.fold (genInj k) fs tset
genInj k (args,res) fs =
assert (length args == 1)
$ makeNamed (newName k (head args) res)
(SPQuantTerm SPForall [typedVarTerm var (head args)]
(compTerm SPEqual
[compTerm (spSym k)
[simpTerm (spSym var)],
simpTerm (spSym var)])) : fs
var = fromJust (find (\ x -> not (Set.member x usedIds))
("Y":["Y"++show i | i <- [(1::Int)..]]))
newName o a r = "ga_"++o++'_':a++'_':r++"_id"
usedIds = elemsSPId_Set idMap
{- |
Translate a CASL signature into SoftFOL signature 'SoftFOL.Sign.Sign'.
Before translating, eqPredicate symbols where removed from signature.
-}
transSign :: CSign.Sign f e ->
(SPSign.Sign, IdType_SPId_Map, [Named SPTerm])
transSign sign = (SPSign.emptySign { SPSign.sortRel =
Rel.map transIdSort (CSign.sortRel sign)
, sortMap = spSortMap
, funcMap = fMap
, SPSign.predMap = pMap
, singleSorted = isSingleSorted sign
}
, idMap''
, predImplications)
where (spSortMap,idMap) =
Set.fold (\ i (sm,im) ->
let sid = disSPOId CSort (transIdSort i)
[take 20 (cycle "So")]
(Map.keysSet sm)
in (Map.insert sid Nothing sm,
insertSPId i CSort sid im))
(CSign.sortSet sign)
(fMap,idMap') = transFuncMap idMap sign
(pMap,idMap'',predImplications) = transPredMap idMap' sign
nonEmptySortSens :: Set.Set String -> SortMap -> [Named SPTerm]
nonEmptySortSens emptySorts sm =
(\ s _ res ->
if s `Set.member` emptySorts then res else extSen s:res)
[] sm
where extSen s = makeNamed ("ga_non_empty_sort_" ++ s) $ SPQuantTerm
SPExists [varTerm] $ compTerm (spSym s) [varTerm]
where varTerm = simpTerm $ spSym $ newVar s
newVar s = fromJust $ find (\ x -> x /= s)
$ "Y" : ["Y"++show i | i <- [(1::Int)..]]
transTheory :: (Pretty f, PosItem f, Eq f) =>
SignTranslator f e
-> FormulaTranslator f e
-> (CSign.Sign f e, [Named (FORMULA f)])
-> Result SoftFOLTheory
transTheory trSig trForm (sign,sens) =
fmap (trSig sign (CSign.extendedInfo sign))
(case transSign (filterPreds $ foldl insInjOps sign genAxs) of
(tSign,idMap,sign_sens) ->
do (idMap',tSign',sentencesAndGoals) <-
integrateGenerated idMap genSens tSign
let tSignElim = if SPSign.singleSortNotGen tSign'
then tSign' {sortMap = Map.empty} else tSign'
emptySorts = Set.map transIdSort (emptySortSet sign)
return (tSignElim,
sign_sens++
sentencesAndGoals ++
nonEmptySortSens emptySorts (sortMap tSignElim) ++
map (mapNamed (transFORM (singleSortNotGen tSign') eqPreds
sign idMap' trForm))
realSens'))
where (genSens,realSens) =
partition (\ s -> case sentence s of
Sort_gen_ax _ _ -> True
_ -> False) sens
(eqPreds, realSens') = foldl findEqPredicates (Set.empty, []) realSens
(genAxs,_) = partition isAxiom genSens
insInjOps sig s =
case sentence s of
(Sort_gen_ax constrs _) ->
case recover_Sort_gen_ax constrs of
(_,ops,mp) -> assert (null mp) (insertInjOps sig ops)
_ -> error "SuleCFOL2SoftFOL.transTheory.insInjOps"
filterPreds sig =
sig { CSign.predMap = CSign.diffMapSet
(CSign.predMap sig)
(Set.fold (\pl newMap -> case pl of
Pred_name pn -> insertPredToSet pn
(Pred_type [] nullRange) newMap
Qual_pred_name pn pt _ -> insertPredToSet pn pt newMap)
Map.empty eqPreds) }
insertPredToSet pId pType pMap =
if (Map.member pId pMap)
then Map.adjust insPredSet pId pMap
else Map.insert pId (insPredSet Set.empty) pMap
where
insPredSet = Set.insert (CSign.toPredType pType)
{- |
Finds definitions (Equivalences) where one side is a binary predicate
and the other side is a built-in equality application (Strong_equation).
The given Named (FORMULA f) is checked for this and if so, will be put
into the set of such predicates.
-}
findEqPredicates :: (Show f, Eq f) => (Set.Set PRED_SYMB, [Named (FORMULA f)])
-- ^ previous list of found predicates and valid sentences
-> Named (FORMULA f)
-- ^ sentence to check
-> (Set.Set PRED_SYMB, [Named (FORMULA f)])
findEqPredicates (eqPreds, sens) sen =
case (sentence sen) of
Quantification Universal var_decl quantFormula _ ->
isEquiv (foldl (\ vList (Var_decl v s _) ->
vList ++ map (\vl -> (vl, s)) v)
[] var_decl)
quantFormula
_ -> validSens
where
validSens = (eqPreds, sens ++ [sen])
isEquiv vars qf =
-- Exact two variables are checked if they have the same Sort.
-- If more than two variables should be compared, use foldl.
if (length vars == 2) && (snd (head vars) == snd (vars !! 1))
then case qf of
Equivalence f1 f2 _-> isStrong_eq vars f1 f2
_ -> validSens
else validSens
isStrong_eq vars f1 f2 =
let f1n = case f1 of
Strong_equation _ _ _ -> f1
_ -> f2
f2n = case f1 of
Strong_equation _ _ _ -> f2
_ -> f1
in case f1n of
Strong_equation eq_t1 eq_t2 _ -> case f2n of
Predication eq_pred_symb pterms _ ->
if (Map.toAscList (Map.fromList $ sortedVarTermList pterms)
== Map.toAscList (Map.fromList vars))
&& (Map.toAscList
(Map.fromList $ sortedVarTermList [eq_t1, eq_t2])
== Map.toAscList (Map.fromList vars))
then (Set.insert eq_pred_symb eqPreds, sens)
else validSens
_ -> validSens
_ -> validSens
{- |
Creates a list of (VAR, SORT) out of a list of TERMs. Only Qual_var TERMs
are inserted which will be checked using
-}
sortedVarTermList :: [TERM f]
-> [(VAR, SORT)]
sortedVarTermList ts = mapMaybe hasSortedVarTerm ts
{- |
Finds a 'CASL.AS_Basic_CASL.Qual_var' term recursively if super term(s) is
-}
hasSortedVarTerm :: TERM f
-> Maybe (VAR, SORT)
hasSortedVarTerm t = case t of
Qual_var v s _ -> Just (v,s)
Sorted_term tx _ _ -> hasSortedVarTerm tx
Cast tx _ _ -> hasSortedVarTerm tx
_ -> Nothing
------------------------------ Formulas ------------------------------
transOP_SYMB :: IdType_SPId_Map -> OP_SYMB -> SPIdentifier
transOP_SYMB idMap qo@(Qual_op_name op ot _) =
maybe (error ("SuleCFOL2SoftFOL.transOP_SYMB: unknown op: " ++ show qo))
id (lookupSPId op (COp (CSign.toOpType ot)) idMap)
transOP_SYMB _ (Op_name _) = error "SuleCFOL2SoftFOL: unqualified operation"
transPRED_SYMB :: IdType_SPId_Map -> PRED_SYMB -> SPIdentifier
transPRED_SYMB idMap qp@(Qual_pred_name p pt _) = maybe
(error ("SuleCFOL2SoftFOL.transPRED_SYMB: unknown pred: " ++ show qp))
id (lookupSPId p (CPred (CSign.toPredType pt)) idMap)
transPRED_SYMB _ (Pred_name _) =
error "SuleCFOL2SoftFOL: unqualified predicate"
-- |
-- Translate the quantifier
quantify :: QUANTIFIER -> SPQuantSym
quantify q = case q of
Universal -> SPForall
Existential -> SPExists
Unique_existential ->
error "SuleCFOL2SoftFOL: no translation for existential quantification."
transVarTup :: (Set.Set SPIdentifier,IdType_SPId_Map) ->
(VAR,SORT) ->
((Set.Set SPIdentifier,IdType_SPId_Map),
(SPIdentifier,SPIdentifier))
-- ^ ((new set of used Ids,new map of Ids to original Ids),
-- (var as sp_Id,sort as sp_Id))
transVarTup (usedIds,idMap) (v,s) =
((Set.insert sid usedIds,
insertSPId vi (CVar s) sid $ deleteSPId vi (CVar s) idMap)
, (sid,spSort))
where spSort = maybe (error ("SuleCFOL2SoftFOL: translation of sort \""++
showDoc s "\" not found"))
id (lookupSPId s CSort idMap)
vi = simpleIdToId v
sid = disSPOId (CVar s) (transId (CVar s) vi)
["_Va_"++ showDoc s "_Va"]
usedIds
mapSen :: (Eq f, Pretty f) => Bool
-> FormulaTranslator f e
-> CSign.Sign f e -> FORMULA f -> SPTerm
mapSen siSo trForm sign phi = transFORM siSo (Set.empty) sign
((\ (_,x,_) -> x) (transSign sign))
trForm phi
transFORM :: (Eq f, Pretty f) => Bool -- ^ single sorted flag
-> Set.Set PRED_SYMB -- ^ list of predicates to substitute
-> CSign.Sign f e
-> IdType_SPId_Map -> FormulaTranslator f e
-> FORMULA f -> SPTerm
transFORM siSo eqPreds sign i tr phi = transFORMULA siSo sign i tr phi'
where phi' = codeOutConditionalF id
(codeOutUniqueExtF id id
(substEqPreds eqPreds id phi))
transFORMULA :: Pretty f => Bool -> CSign.Sign f e -> IdType_SPId_Map
-> FormulaTranslator f e -> FORMULA f -> SPTerm
transFORMULA siSo sign idMap tr (Quantification qu vdecl phi _) =
SPQuantTerm (quantify qu)
vList
(transFORMULA siSo sign idMap' tr phi)
where ((_,idMap'),vList) =
mapAccumL (\ acc e ->
let (acc',e') = transVarTup acc e
in (acc', (if siSo then simpTerm . spSym . fst
else uncurry typedVarTerm)
e'))
(sidSet,idMap) (flatVAR_DECLs vdecl)
sidSet = elemsSPId_Set idMap
transFORMULA siSo sign idMap tr (Conjunction phis _) =
if null phis then SPSimpleTerm SPTrue
else foldl1 mkConj (map (transFORMULA siSo sign idMap tr) phis)
transFORMULA siSo sign idMap tr (Disjunction phis _) =
if null phis then SPSimpleTerm SPFalse
else foldl1 mkDisj (map (transFORMULA siSo sign idMap tr) phis)
transFORMULA siSo sign idMap tr (Implication phi1 phi2 _ _) =
compTerm SPImplies [transFORMULA siSo sign idMap tr phi1,
transFORMULA siSo sign idMap tr phi2]
transFORMULA siSo sign idMap tr (Equivalence phi1 phi2 _) =
compTerm SPEquiv [transFORMULA siSo sign idMap tr phi1,
transFORMULA siSo sign idMap tr phi2]
transFORMULA siSo sign idMap tr (Negation phi _) =
compTerm SPNot [transFORMULA siSo sign idMap tr phi]
transFORMULA _siSo _sign _idMap _tr (True_atom _) = SPSimpleTerm SPTrue
transFORMULA _siSo _sign _idMap _tr (False_atom _) = SPSimpleTerm SPFalse
transFORMULA siSo sign idMap tr (Predication psymb args _) =
compTerm (spSym (transPRED_SYMB idMap psymb))
(map (transTERM siSo sign idMap tr) args)
transFORMULA siSo sign idMap tr (Existl_equation t1 t2 _)
| term_sort t1 == term_sort t2 =
mkEq (transTERM siSo sign idMap tr t1) (transTERM siSo sign idMap tr t2)
transFORMULA siSo sign idMap tr (Strong_equation t1 t2 _)
| term_sort t1 == term_sort t2 =
mkEq (transTERM siSo sign idMap tr t1) (transTERM siSo sign idMap tr t2)
transFORMULA _siSo sign idMap tr (ExtFORMULA phi) = tr sign idMap phi
transFORMULA _ _ _ _ (Definedness _ _) = SPSimpleTerm SPTrue -- assume totality
transFORMULA siSo sign idMap tr (Membership t s _) =
if siSo then SPSimpleTerm SPTrue
else
maybe (error ("SuleCFOL2SoftFOL.tF: no SoftFOL Id found for \""++
showDoc s "\""))
(\si -> compTerm (spSym si) [transTERM siSo sign idMap tr t])
(lookupSPId s CSort idMap)
transFORMULA _ _ _ _ (Sort_gen_ax _ _) =
error "SuleCFOL2SoftFOL.transFORMULA: unexpected Sort generation constraints not\
\ supported at this point!"
transFORMULA _ _ _ _ f =
error ("SuleCFOL2SoftFOL.transFORMULA: unknown FORMULA '"++showDoc f "'")
transTERM :: Pretty f => Bool -> CSign.Sign f e -> IdType_SPId_Map
-> FormulaTranslator f e -> TERM f -> SPTerm
transTERM _siSo _sign idMap _tr (Qual_var v s _) =
maybe (error
("SuleCFOL2SoftFOL.tT: no SoftFOL Id found for \""++showDoc v "\""))
(simpTerm . spSym) (lookupSPId (simpleIdToId v) (CVar s) idMap)
transTERM siSo sign idMap tr (Application opsymb args _) =
compTerm (spSym (transOP_SYMB idMap opsymb))
(map (transTERM siSo sign idMap tr) args)
transTERM _siSo _sign _idMap _tr (Conditional _t1 _phi _t2 _) =
error "SuleCFOL2SoftFOL.transTERM: Conditional terms must be coded out."
transTERM siSo sign idMap tr (Sorted_term t s _)
| term_sort t == s = recRes
| otherwise =
assert (Set.member (term_sort t) (CSign.subsortsOf s sign))
recRes
where recRes = transTERM siSo sign idMap tr t
transTERM siSo sign idMap tr (Cast t s _)
| term_sort t == s = recRes
| otherwise =
assert (Set.member s (CSign.subsortsOf (term_sort t) sign))
recRes
where recRes = transTERM siSo sign idMap tr t
transTERM _siSo _sign _idMap _tr t =
error ("SuleCFOL2SoftFOL.transTERM: unknown TERM '"++showDoc t "'")
isSingleSorted :: CSign.Sign f e -> Bool
isSingleSorted sign =
Set.size (CSign.sortSet sign) == 1
&& Set.null (emptySortSet sign) -- empty sorts need relativization