Prop2CASL.hs revision 5e3cef514723e554bcd268c4488a3cb7ef62fe6b
{- |
Module : $Header$
Description : Coding of CASL into SoftFOL
Copyright : (c) Dominik Luecke and Uni Bremen 2007
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@tzi.de
Stability : experimental
Portability : non-portable (imports Logic.Logic)
The translating comorphism from Propositional to CASL.
-}
module Comorphisms.Prop2CASL
(
Prop2CASL (..)
)
where
import Logic.Logic
import Logic.Comorphism
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Common.AS_Annotation as AS_Anno
import qualified Common.Id as Id
import qualified Common.Result as Result
import qualified Common.GlobalAnnotations as GA
import qualified Common.Lib.Rel as Rel
-- Propositional
import qualified Propositional.Logic_Propositional as PLogic
import qualified Propositional.AS_BASIC_Propositional as PBasic
import qualified Propositional.Sublogic as PSL
import qualified Propositional.Sign as PSign
import qualified Propositional.Morphism as PMor
import qualified Propositional.Symbol as PSymbol
-- CASL
import qualified CASL.Logic_CASL as CLogic
import qualified CASL.AS_Basic_CASL as CBasic
import qualified CASL.Sublogic as CSL
import qualified CASL.Sign as CSign
import qualified CASL.Morphism as CMor
-- | lid of the morphism
data Prop2CASL = Prop2CASL deriving (Show)
instance Language Prop2CASL
instance Comorphism Prop2CASL
PLogic.Propositional
PSL.PropSL
PBasic.BASIC_SPEC
PBasic.FORMULA
PBasic.SYMB_ITEMS
PBasic.SYMB_MAP_ITEMS
PSign.Sign
PMor.Morphism
PSymbol.Symbol
PSymbol.Symbol
()
CLogic.CASL
CSL.CASL_Sublogics
CLogic.CASLBasicSpec
CLogic.CASLFORMULA
CBasic.SYMB_ITEMS
CBasic.SYMB_MAP_ITEMS
CLogic.CASLSign
CLogic.CASLMor
CSign.Symbol
CMor.RawSymbol
()
where
sourceLogic Prop2CASL = PLogic.Propositional
sourceSublogic Prop2CASL = PSL.top
targetLogic Prop2CASL = CLogic.CASL
mapSublogic Prop2CASL = mapSub
map_theory Prop2CASL = mapTheory
is_model_transportable Prop2CASL = True
map_symbol Prop2CASL = mapSym
map_sentence Prop2CASL = mapSentence
map_morphism Prop2CASL = mapMor
-- | Translation of the signature
mapSig :: PSign.Sign -> CLogic.CASLSign
mapSig sign = CSign.Sign
{
CSign.sortSet = Set.empty
, CSign.sortRel = Rel.empty
, CSign.opMap = Map.empty
, CSign.assocOps = Map.empty
, CSign.predMap = Set.fold (\x -> Map.insert x
(Set.singleton $ CSign.PredType
{CSign.predArgs = []}))
Map.empty $ PSign.items sign
, CSign.varMap = Map.empty
, CSign.sentences = []
, CSign.envDiags = []
, CSign.annoMap = Map.empty
, CSign.globAnnos = GA.emptyGlobalAnnos
, CSign.extendedInfo = ()
}
-- | Which is the target sublogic?
mapSub :: PSL.PropSL -> CSL.CASL_Sublogics
mapSub sl =
case (PSL.isHC sl) of
True -> CSL.bottom
{
CSL.cons_features = CSL.NoSortGen
, CSL.sub_features = CSL.NoSub
, CSL.has_pred = True
, CSL.has_eq = False
, CSL.which_logic = CSL.Horn
}
False -> CSL.bottom
{
CSL.cons_features = CSL.NoSortGen
, CSL.sub_features = CSL.NoSub
, CSL.has_pred = True
, CSL.has_eq = False
, CSL.which_logic = CSL.FOL
}
-- | Translation of morphisms
mapMor :: PMor.Morphism -> Result.Result CLogic.CASLMor
mapMor mor = Result.Result
{
Result.diags = []
, Result.maybeResult = Just $ CMor.Morphism
{
CMor.msource = mapSig $ PMor.source mor
, CMor.mtarget = mapSig $ PMor.target mor
, CMor.sort_map = Map.empty
, CMor.fun_map = Map.empty
, CMor.pred_map = trMor $ PMor.propMap mor
, CMor.extended_map = ()
}
}
-- | Mapping of a theory
mapTheory :: (PSign.Sign, [AS_Anno.Named (PBasic.FORMULA)])
-> Result.Result (CLogic.CASLSign, [AS_Anno.Named (CLogic.CASLFORMULA)])
mapTheory (sig, form) = Result.Result
{
Result.diags = []
, Result.maybeResult = Just (mapSig sig, map trNamedForm form)
}
-- | Translation of symbols
mapSym :: PSymbol.Symbol -> Set.Set CSign.Symbol
mapSym sym = Set.singleton $ CSign.Symbol
{
CSign.symName = PSymbol.symName sym
, CSign.symbType = CSign.PredAsItemType CSign.PredType{CSign.predArgs = []}
}
-- | Translation of sentence
mapSentence :: PSign.Sign -> PBasic.FORMULA -> Result.Result CLogic.CASLFORMULA
mapSentence _ form = Result.Result
{
Result.diags = []
, Result.maybeResult = Just $ trForm form
}
-------------------------------------------------------------------------------
-- Helpers --
-------------------------------------------------------------------------------
-- | Helper for map theory
trNamedForm :: AS_Anno.Named (PBasic.FORMULA)
-> AS_Anno.Named (CLogic.CASLFORMULA)
trNamedForm form =
let
sName = AS_Anno.senName form
isAxiom = AS_Anno.isAxiom form
isDef = AS_Anno.isDef form
sSen = AS_Anno.sentence form
in
AS_Anno.NamedSen
{
AS_Anno.senName = sName
, AS_Anno.sentence = trForm sSen
, AS_Anno.isDef = isDef
, AS_Anno.isAxiom = isAxiom
}
-- | Helper for map sentence and map theory
trForm :: PBasic.FORMULA
-> CLogic.CASLFORMULA
trForm form =
case form of
PBasic.Negation fn rn -> CBasic.Negation (trForm fn) rn
PBasic.Conjunction fn rn -> CBasic.Conjunction (map trForm fn) rn
PBasic.Disjunction fn rn -> CBasic.Disjunction (map trForm fn) rn
PBasic.Implication f1 f2 rn ->
CBasic.Implication (trForm f1) (trForm f2) True rn
PBasic.Equivalence f1 f2 rn ->
CBasic.Equivalence (trForm f1) (trForm f2) rn
PBasic.True_atom rn -> CBasic.True_atom rn
PBasic.False_atom rn -> CBasic.False_atom rn
PBasic.Predication pid -> CBasic.Predication
(CBasic.Qual_pred_name (Id.simpleIdToId pid)
(CBasic.Pred_type [] Id.nullRange)
Id.nullRange
)
[] Id.nullRange
-- | Helper for map mor
trMor :: Map.Map Id.Id Id.Id -> Map.Map (Id.Id, CSign.PredType) Id.Id
trMor mp =
let
pt = CSign.PredType{CSign.predArgs = []}
in
Map.foldWithKey
(\ k a ->
Map.insert (k, pt) a
)
Map.empty
mp