PPolyTyConsHOL2IsaUtils.hs revision f4a74236e18cc4f4b905bc1dba94919bd97950f4
{- |
Module : $Header$
Description : translating a HasCASL subset to Isabelle
Copyright : (c) C. Maeder, DFKI 2008
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
utility function for translation from HasCASL to Isabelle leaving open how
partial values are interpreted
-}
module Comorphisms.PPolyTyConsHOL2IsaUtils where
import HasCASL.Le as Le
import HasCASL.As as As
import HasCASL.AsUtils
import HasCASL.Builtin
import HasCASL.Unify (substGen)
import Isabelle.IsaSign as Isa
import Isabelle.IsaConsts
import Isabelle.Translate
import Common.DocUtils
import Common.Id
import Common.Result
import qualified Data.Map as Map
import qualified Data.Set as Set
import Common.Lib.State
import Common.AS_Annotation
import Common.GlobalAnnotations
import Data.List (elemIndex)
import Data.Maybe (catMaybes, isNothing)
import Control.Monad (foldM)
mapTheory :: Simplifier -> (Env, [Named Le.Sentence])
-> Result (Isa.Sign, [Named Isa.Sentence])
mapTheory simpF (env, sens) = do
let tyToks = typeToks env
sign <- transSignature env tyToks
isens <- mapM (mapNamedM $ transSentence env tyToks simpF) sens
(dt, _, _) <- foldM (transDataEntries env tyToks)
([], Set.empty, Set.empty) $ filter (not . null) $ map
(\ ns -> case sentence ns of
DatatypeSen ds -> ds
_ -> []) sens
return ( sign { domainTab = reverse dt }
, filter (\ ns -> sentence ns /= mkSen true) isens)
-- * Signature
baseSign :: BaseSig
baseSign = MainHC_thy
transAssumps :: GlobalAnnos -> Set.Set String -> Assumps -> Result ConstTab
transAssumps ga toks = foldM insertOps Map.empty . Map.toList where
insertOps m (name, ops) =
let chk t = isPlainFunType t
in case map opType $ Set.toList ops of
[TypeScheme _ op _ ] -> do
ty <- funType op
return $ Map.insert
(mkIsaConstT (isPredType op) ga (chk ty)
name baseSign toks) (transPlainFunType ty) m
infos -> foldM ( \ m' (i, TypeScheme _ op _) -> do
ty <- funType op
return $ Map.insert
(mkIsaConstIT (isPredType op) ga (chk ty)
name i baseSign toks) (transPlainFunType ty) m'
) m $ zip [1..] infos
-- all possible tokens of mixfix identifiers that must not be used as variables
getAssumpsToks :: Assumps -> Set.Set String
getAssumpsToks = Map.foldWithKey (\ i ops s ->
Set.union s $ Set.unions
$ zipWith (\ o _ -> getConstIsaToks i o baseSign) [1..]
$ Set.toList ops) Set.empty
typeToks :: Env -> Set.Set String
typeToks =
Set.map (\ tyId -> showIsaTypeT tyId baseSign) . Map.keysSet . typeMap
transSignature :: Env -> Set.Set String -> Result Isa.Sign
transSignature env toks = do
let extractTypeName tyId typeInfo m =
let getTypeArgs n k = case k of
ClassKind _ -> []
FunKind _ _ r _ ->
(TFree ("'a" ++ show n) [], [isaTerm])
: getTypeArgs (n + 1) r
in Map.insert (showIsaTypeT tyId baseSign)
[(isaTerm, getTypeArgs (1 :: Int) $ typeKind typeInfo)] m
ct <- transAssumps (globAnnos env) toks $ assumps env
return $ Isa.emptySign
{ baseSig = baseSign
-- translation of typeconstructors
, tsig = emptyTypeSig
{ arities = Map.foldWithKey extractTypeName Map.empty
(typeMap env) }
, constTab = ct }
-- * translation of a type in an operation declaration
unitTyp :: Typ
unitTyp = Type "unit" holType []
mkPartialType :: Typ -> Typ
mkPartialType arg = Type "partial" [] [arg]
transFunType :: FunType -> Typ
transFunType fty = case fty of
UnitType -> unitTyp
BoolType -> boolType
FunType f a -> mkFunType (transFunType f) $ transFunType a
PartialVal a -> mkPartialType $ transFunType a
PairType a b -> prodType (transFunType a) $ transFunType b
TupleType l -> case l of
[] -> error "transFunType"
_ -> transFunType $ foldl1 PairType l
ApplType tid args -> Type (showIsaTypeT tid baseSign) []
$ map transFunType args
TypeVar tid -> TFree (showIsaTypeT tid baseSign) []
-- compute number of arguments for plain CASL functions
isPlainFunType :: FunType -> Int
isPlainFunType fty = case fty of
FunType f a -> case a of
FunType _ _ -> -1
_ -> case f of
TupleType l -> length l
_ -> 1
_ -> 0
transPlainFunType :: FunType -> Typ
transPlainFunType fty =
case fty of
FunType (TupleType l) a -> case a of
FunType _ _ -> transFunType fty
_ -> foldr mkFunType (transFunType a)
$ map transFunType l
_ -> transFunType fty
data FunType = UnitType | BoolType
| FunType FunType FunType
| PartialVal FunType
| PairType FunType FunType -- only used to represent tuples as nested pairs
| TupleType [FunType]
| ApplType Id [FunType]
| TypeVar Id
deriving Eq
isPartialVal :: FunType -> Bool
isPartialVal t = case t of
PartialVal _ -> True
BoolType -> True
_ -> False
makePartialVal :: FunType -> FunType
makePartialVal t = if isPartialVal t then t else case t of
UnitType -> BoolType
_ -> PartialVal t
funType :: Type -> Result FunType
funType t = case getTypeAppl t of
(TypeName tid _ n, tys) ->
if n == 0 then do
ftys <- mapM funType tys
return $ case ftys of
[] | tid == unitTypeId -> UnitType
[ty] | tid == lazyTypeId -> makePartialVal ty
[t1, t2] | isArrow tid -> FunType t1 $
if isPartialArrow tid then makePartialVal t2 else t2
(_ : _ : _) | isProductId tid -> TupleType ftys
_ -> ApplType tid ftys
else if null tys then return $ TypeVar tid
else fatal_error "funType: no higher kinds" $ posOfId tid
_ -> fatal_error "funType: no type appl" $ getRange t
-- * translation of a datatype declaration
transDataEntries :: Env -> Set.Set String
-> (DomainTab, Set.Set TName, Set.Set VName) -> [DataEntry]
-> Result (DomainTab, Set.Set TName, Set.Set VName)
transDataEntries env tyToks t@(dt, tys, cs) l = do
let rs = map (transDataEntry env tyToks) l
ms = map maybeResult rs
toWarning = map ( \ d -> d { diagKind = Warning })
appendDiags $ toWarning $ concatMap diags rs
if any isNothing ms then return t
else do
let des = catMaybes ms
ntys = map (Isa.typeId . fst) des
ncs = concatMap (map fst . snd) des
foldF str cnv = foldM ( \ s i ->
if Set.member i s then
fail $ "duplicate " ++ str ++ cnv i
else return $ Set.insert i s)
Result d1 mrtys = foldF "datatype " id tys ntys
Result d2 mrcs = foldF "constructor " new cs ncs
appendDiags $ toWarning $ d1 ++ d2
case (mrtys, mrcs) of
(Just rtys, Just rcs) -> return (des : dt, rtys, rcs)
_ -> return t
-- datatype with name (tyId) + args (tyArgs) and alternatives
transDataEntry :: Env -> Set.Set String -> DataEntry -> Result DomainEntry
transDataEntry env tyToks (DataEntry tm tyId gk tyArgs rk alts) =
let i = Map.findWithDefault tyId tyId tm
dt = patToType i tyArgs rk
in case gk of
Le.Free -> do
nalts <- mapM (transAltDefn env tyToks tm tyArgs dt i) $ Set.toList alts
let transDName ti ta = Type (showIsaTypeT ti baseSign) []
$ map transTypeArg ta
return (transDName i tyArgs, nalts)
_ -> fatal_error ("not a free type: " ++ show i)
$ posOfId i
-- arguments of a datatype's typeconstructor
transTypeArg :: TypeArg -> Typ
transTypeArg ta = TFree (showIsaTypeT (getTypeVar ta) baseSign) []
-- datatype alternatives/constructors
transAltDefn :: Env -> Set.Set String -> IdMap -> [TypeArg] -> Type -> Id
-> AltDefn -> Result (VName, [Typ])
transAltDefn env tyToks tm args dt tyId alt = case alt of
Construct (Just opId) ts Total _ -> do
let mTs = map (mapType tm) ts
sc = TypeScheme args (getFunType dt Total mTs) nullRange
nts <- mapM funType mTs
-- extract overloaded opId number
return (transOpId env tyToks opId sc, case nts of
[TupleType l] -> map transFunType l
_ -> map transFunType nts)
_ -> fatal_error ("not a total constructor: " ++ show tyId)
$ posOfId tyId
-- * Formulas
-- variables
transVar :: Set.Set String -> Id -> VName
transVar toks v = let
s = showIsaConstT v baseSign
renVar t = if Set.member t toks then renVar $ "X_" ++ t else t
in mkVName $ renVar s
mkSimplifiedSen :: Simplifier -> Isa.Term -> Isa.Sentence
mkSimplifiedSen simpF t = mkSen $ evalState (simplify simpF t) 0
transSentence :: Env -> Set.Set String -> Simplifier -> Le.Sentence
-> Result Isa.Sentence
transSentence sign tyToks simpF s = case s of
Le.Formula trm -> do
(ty, t) <-
transTerm sign tyToks (getAssumpsToks $ assumps sign) Set.empty trm
case ty of
BoolType -> return $ mkSimplifiedSen simpF t
PartialVal _ ->
return $ mkSimplifiedSen simpF $ mkTermAppl partial2bool t
FunType _ _ -> error "transSentence: FunType"
PairType _ _ -> error "transSentence: PairType"
TupleType _ -> error "transSentence: TupleType"
ApplType _ _ -> error "transSentence: ApplType"
_ -> return $ mkSen true
DatatypeSen _ -> return $ mkSen true
ProgEqSen _ _ (ProgEq _ _ r) -> warning (mkSen true)
"translation of sentence not implemented" r
-- disambiguate operation names
transOpId :: Env -> Set.Set String -> Id -> TypeScheme -> VName
transOpId sign tyToks op ts@(TypeScheme _ ty _) =
let ga = globAnnos sign
Result _ mty = funType ty
in case mty of
Nothing -> error "transOpId"
Just fty ->
let args = isPlainFunType fty
in case (do
ops <- Map.lookup op (assumps sign)
if isSingleton ops then return $
mkIsaConstT (isPredType ty) ga args op baseSign tyToks
else do
i <- elemIndex ts $ map opType $ Set.toList ops
return $ mkIsaConstIT (isPredType ty)
ga args op (i+1) baseSign tyToks) of
Just str -> str
Nothing -> error $ "transOpId " ++ show op
transLetEq :: Env -> Set.Set String -> Set.Set String -> Set.Set VarDecl
-> ProgEq -> Result ((As.Term, Isa.Term), (FunType, Isa.Term))
transLetEq sign tyToks toks pVars (ProgEq pat trm r) = do
(_, op) <- transPattern sign tyToks toks pat
p@(ty, _) <- transTerm sign tyToks toks pVars trm
if isPartialVal ty && not (isQualVar pat) then fatal_error
("rhs must not be partial for a tuple currently: "
++ showDoc trm "") r
else return ((pat, op), p)
transLetEqs :: Env -> Set.Set String -> Set.Set String -> Set.Set VarDecl
-> [ProgEq] -> Result (Set.Set VarDecl, [(Isa.Term, Isa.Term)])
transLetEqs sign tyToks toks pVars es = case es of
[] -> return (pVars, [])
e : r -> do
((pat, op), (ty, ot)) <- transLetEq sign tyToks toks pVars e
(newPVars, newEs) <- transLetEqs sign tyToks toks (if isPartialVal ty
then Set.insert (getQualVar pat) pVars
else pVars) r
return (newPVars, (op, ot) : newEs)
isQualVar :: As.Term -> Bool
isQualVar trm = case trm of
QualVar (VarDecl _ _ _ _) -> True
TypedTerm t _ _ _ -> isQualVar t
_ -> False
getQualVar :: As.Term -> VarDecl
getQualVar trm = case trm of
QualVar vd -> vd
TypedTerm t _ _ _ -> getQualVar t
_ -> error "getQualVar"
ifImplOp :: Isa.Term
ifImplOp = conDouble "ifImplOp"
unitOp :: Isa.Term
unitOp = Tuplex [] NotCont
noneOp :: Isa.Term
noneOp = conDouble "noneOp"
whenElseOp :: Isa.Term
whenElseOp = conDouble "whenElseOp"
resOp :: Isa.Term
resOp = conDouble "resOp"
uncurryOpS :: String
uncurryOpS = "uncurryOp"
curryOpS :: String
curryOpS = "curryOp"
uncurryOp :: Isa.Term
uncurryOp = conDouble uncurryOpS
curryOp :: Isa.Term
curryOp = conDouble curryOpS
for :: Int -> (a -> a) -> a -> a
for n f a = if n <= 0 then a else for (n - 1) f $ f a
{- pass tokens that must not be used as variable names and pass those
variables that are partial because they have been computed in a
let-term. -}
transTerm :: Env -> Set.Set String -> Set.Set String -> Set.Set VarDecl
-> As.Term -> Result (FunType, Isa.Term)
transTerm sign tyToks toks pVars trm = case trm of
QualVar vd@(VarDecl var t _ _) -> do
fTy <- funType t
return ( if Set.member vd pVars then makePartialVal fTy else fTy
, Isa.Free $ transVar toks var)
QualOp _ (PolyId opId _ _) ts@(TypeScheme targs ty _) is _ _ -> do
fTy <- funType ty
instfTy <- funType $ substGen (if null is then Map.empty else
Map.fromList $ zipWith (\ (TypeArg _ _ _ _ i _ _) t
-> (i, t)) targs is) ty
let cf = mkTermAppl (convFun $ instType fTy instfTy)
unCurry f = (fTy, termAppl uncurryOp $ con f)
return $ case () of
()
| opId == trueId -> (fTy, true)
| opId == falseId -> (fTy, false)
| opId == botId -> (fTy, noneOp)
| opId == andId -> unCurry conjV
| opId == orId -> unCurry disjV
| opId == implId -> unCurry implV
| opId == infixIf -> (fTy, ifImplOp)
| opId == eqvId -> unCurry eqV
| opId == exEq -> (instfTy, cf $ termAppl uncurryOp existEqualOp)
| opId == eqId -> (instfTy, cf $ termAppl uncurryOp strongEqualOp)
| opId == notId -> (fTy, notOp)
| opId == defId -> (instfTy, cf defOp)
| opId == whenElse -> (fTy, whenElseOp)
| opId == resId -> (fTy, resOp)
| otherwise -> (instfTy,
cf $ (for (isPlainFunType fTy - 1)
$ termAppl uncurryOp)
$ con $ transOpId sign tyToks opId ts)
QuantifiedTerm quan varDecls phi _ -> do
let qname = case quan of
Universal -> allS
Existential -> exS
Unique -> ex1S
quantify phi' gvd = case gvd of
GenVarDecl (VarDecl var _ _ _) -> do
return $ termAppl (conDouble $ qname)
$ Abs (Isa.Free $ transVar toks var)
phi' NotCont
GenTypeVarDecl _ -> return phi'
(ty, psi) <- transTerm sign tyToks toks pVars phi
psiR <- foldM quantify psi $ reverse varDecls
return (ty, psiR)
TypedTerm t _q _ty _ -> transTerm sign tyToks toks pVars t
LambdaTerm pats q body r -> do
p@(ty, _) <- transTerm sign tyToks toks pVars body
appendDiags $ case q of
Partial -> []
Total -> if isPartialVal ty
then [Diag Warning
("partial lambda body in total abstraction: "
++ showDoc body "") r]
else []
foldM (abstraction sign tyToks toks) p $ reverse pats
LetTerm As.Let peqs body _ -> do
(nPVars, nEqs) <- transLetEqs sign tyToks toks pVars peqs
(bTy, bTrm) <- transTerm sign tyToks toks nPVars body
return (bTy, Isa.Let nEqs bTrm)
TupleTerm ts@(_ : _) _ -> do
nTs <- mapM (transTerm sign tyToks toks pVars) ts
return $ foldl1 ( \ (s, p) (t, e) ->
(PairType s t, Tuplex [p, e] NotCont)) nTs
TupleTerm [] _ -> return (UnitType, unitOp)
ApplTerm t1 t2 _ -> mkApp sign tyToks toks pVars t1 t2
_ -> fatal_error ("cannot translate term: " ++ showDoc trm "")
$ getRange trm
instType :: FunType -> FunType -> ConvFun
instType f1 f2 = case (f1, f2) of
(TupleType l1, _) -> instType (foldl1 PairType l1) f2
(_, TupleType l2) -> instType f1 $ foldl1 PairType l2
(PartialVal (TypeVar _), BoolType) -> Partial2bool
(PairType a c, PairType b d) ->
let c2 = instType c d
c1 = instType a b
in mkCompFun (mkMapFun MapSnd c2) $ mkMapFun MapFst c1
(FunType a c, FunType b d) ->
let c2 = instType c d
c1 = instType a b
in mkCompFun (mkResFun c2) $ mkArgFun $ invertConv c1
_ -> IdOp
invertConv :: ConvFun -> ConvFun
invertConv c = case c of
Partial2bool -> Bool2partial
MapFun mv cf -> MapFun mv $ invertConv cf
ResFun cf -> ResFun $ invertConv cf
ArgFun cf -> ArgFun $ invertConv cf
CompFun c1 c2 -> CompFun (invertConv c2) (invertConv c1)
_ -> IdOp
data MapFun = MapFst | MapSnd | MapPartial
data LiftFun = LiftFst | LiftSnd
data ConvFun =
IdOp | ConstNil | ConstTrue | MkPartial | Bool2partial | Partial2bool
| CompFun ConvFun ConvFun
| MapFun MapFun ConvFun
| LiftFun LiftFun ConvFun
| LiftUnit FunType
| LiftPartial FunType
| ResFun ConvFun
| ArgFun ConvFun
isNotIdOp :: ConvFun -> Bool
isNotIdOp f = case f of
IdOp -> False
_ -> True
mkCompFun :: ConvFun -> ConvFun -> ConvFun
mkCompFun f1 f2 = case f1 of
IdOp -> f2
_ -> case f2 of
IdOp -> f1
_ -> CompFun f1 f2
mkMapFun :: MapFun -> ConvFun -> ConvFun
mkMapFun m f = case f of
IdOp -> IdOp
_ -> MapFun m f
mkLiftFun :: LiftFun -> ConvFun -> ConvFun
mkLiftFun lv c = case c of
IdOp -> IdOp
_ -> LiftFun lv c
mapFun :: MapFun -> Isa.Term
mapFun mf = case mf of
MapFst -> mapFst
MapSnd -> mapSnd
MapPartial -> mapPartial
compOp :: Isa.Term
compOp = con compV
convFun :: ConvFun -> Isa.Term
convFun cvf = case cvf of
IdOp -> idOp
Bool2partial -> bool2partial
Partial2bool -> partial2bool
LiftUnit rTy -> case rTy of
UnitType -> liftUnit2unit
BoolType -> liftUnit2bool
PartialVal _ -> liftUnit2partial
_ -> liftUnit
LiftPartial rTy ->
case rTy of
UnitType -> lift2unit
BoolType -> lift2bool
PartialVal _ -> lift2partial
_ -> mapPartial
CompFun f1 f2 ->
mkTermAppl (mkTermAppl compOp $ convFun f1) $ convFun f2
ConstNil -> constNil
ConstTrue -> constTrue
MkPartial -> mkPartial
MapFun mf cv -> mkTermAppl (mapFun mf) $ convFun cv
LiftFun lf cv -> let ccv = convFun cv in case lf of
LiftFst -> mkTermAppl (mkTermAppl compOp
$ mkTermAppl (mkTermAppl compOp uncurryOp) flipOp)
$ mkTermAppl (mkTermAppl compOp
$ mkTermAppl (mkTermAppl compOp
$ mkTermAppl compOp ccv) flipOp) curryOp
LiftSnd -> mkTermAppl (mkTermAppl compOp uncurryOp) $
mkTermAppl (mkTermAppl compOp $ mkTermAppl compOp ccv)
curryOp
ArgFun cv -> mkTermAppl (termAppl flipOp compOp) $ convFun cv
ResFun cv -> mkTermAppl compOp $ convFun cv
mapFst, mapSnd, mapPartial, idOp, bool2partial,
partial2bool, constNil, constTrue,
liftUnit2unit, liftUnit2bool, liftUnit2partial, liftUnit, lift2unit,
lift2bool, lift2partial, mkPartial :: Isa.Term
mapFst = conDouble "mapFst"
mapSnd = conDouble "mapSnd"
mapPartial = conDouble "mapPartial"
idOp = conDouble "id"
bool2partial = conDouble "bool2partial"
partial2bool = conDouble "partial2bool"
constNil = conDouble "constNil"
constTrue = conDouble "constTrue"
liftUnit2unit = conDouble "liftUnit2unit"
liftUnit2bool = conDouble "liftUnit2bool"
liftUnit2partial = conDouble "liftUnit2partial"
liftUnit = conDouble "liftUnit"
lift2unit = conDouble "lift2unit"
lift2bool = conDouble "lift2bool"
lift2partial = conDouble "lift2partial"
mkPartial = conDouble "makePartial"
existEqualOp :: Isa.Term
existEqualOp =
con $ VName "existEqualOp" $ Just $ AltSyntax "(_ =e=/ _)" [50, 51] 50
strongEqualOp :: Isa.Term
strongEqualOp =
con $ VName "strongEqualOp" $ Just $ AltSyntax "(_ =e=/ _)" [50, 51] 50
unpackOp :: FunType -> Isa.Term
unpackOp ft = case ft of
UnitType -> conDouble "unpack2bool"
BoolType -> conDouble "unpackBool"
PartialVal _ -> conDouble "unpackPartial"
_ -> conDouble "unpack2partial"
-- True means require result type to be partial
adjustTypes :: FunType -> FunType -> FunType
-> Result ((Bool, ConvFun), (FunType, ConvFun))
adjustTypes aTy rTy ty = case (aTy, ty) of
(TupleType l, _) -> adjustTypes (foldl1 PairType l) rTy ty
(_, TupleType l) -> adjustTypes aTy rTy $ foldl1 PairType l
(BoolType, BoolType) -> return ((False, IdOp), (ty, IdOp))
(UnitType, UnitType) -> return ((False, IdOp), (ty, IdOp))
(PartialVal _, BoolType) -> return ((False, IdOp), (aTy, Bool2partial))
(BoolType, PartialVal _) -> return ((False, IdOp), (aTy, Partial2bool))
(_, BoolType) -> return ((True, LiftUnit rTy), (ty, IdOp))
(BoolType, _) -> return ((False, IdOp), (aTy, ConstTrue))
(PartialVal a, PartialVal b) -> do
q@(fp, (argTy, aTrm)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> (fp, (PartialVal argTy, mkMapFun MapPartial aTrm))
(a, PartialVal b) -> do
q@(_, ap@(argTy, _)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> ((True, LiftPartial rTy), ap)
(PartialVal a, b) -> do
q@(fp, (argTy, aTrm)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> (fp, (PartialVal argTy, mkCompFun MkPartial aTrm))
(PairType a c, PairType b d) -> do
((res2Ty, f2), (arg2Ty, a2)) <- adjustTypes c rTy d
((res1Ty, f1), (arg1Ty, a1)) <- adjustTypes a
(if res2Ty then makePartialVal rTy else rTy) b
return $ ((res1Ty || res2Ty,
mkCompFun (mkLiftFun LiftFst f1) $ mkLiftFun LiftSnd f2),
(PairType arg1Ty arg2Ty,
mkCompFun (mkMapFun MapSnd a2) $ mkMapFun MapFst a1))
(FunType a c, FunType b d) -> do
((_, aF), (aT, aC)) <- adjustTypes b c a
((cB, cF), (dT, dC)) <- adjustTypes c rTy d
if cB || isNotIdOp cF
then fail "cannot adjust result types of function type"
else return ((False, IdOp),
(FunType aT dT,
mkCompFun aF $ mkCompFun (mkResFun dC) $ mkArgFun aC))
(TypeVar _, _) -> return ((False, IdOp), (ty, IdOp))
(_, TypeVar _) -> return ((False, IdOp), (aTy, IdOp))
(ApplType i1 l1, ApplType i2 l2) | i1 == i2 && length l1 == length l2
-> do l <- mapM (\ (a, b) -> adjustTypes a rTy b) $ zip l1 l2
if or (map (fst . fst) l) || or
(map (isNotIdOp . snd . snd) l)
then fail "cannot adjust type application"
else return ((False, IdOp),
(ApplType i1 $ map (fst . snd) l, IdOp))
_ -> fail "cannot adjust types"
applConv :: ConvFun -> Isa.Term -> Isa.Term
applConv cnv t = case cnv of
IdOp -> t
_ -> mkTermAppl (convFun cnv) t
mkArgFun :: ConvFun -> ConvFun
mkArgFun c = case c of
IdOp -> c
_ -> ArgFun c
mkResFun :: ConvFun -> ConvFun
mkResFun c = case c of
IdOp -> c
_ -> ResFun c
isEquallyLifted :: Isa.Term -> Isa.Term -> Maybe (Isa.Term, Isa.Term, Isa.Term)
isEquallyLifted l r = case (l, r) of
(App ft@(Const f _) la _,
App (Const g _) ra _)
| f == g && elem (new f) ["makePartial", "partial2bool", "bool2partial"]
-> Just (ft, la, ra)
_ -> Nothing
isLifted :: Isa.Term -> Bool
isLifted t = case t of
App (Const f _) _ _ | new f == "makePartial" -> True
_ -> False
flipS :: String
flipS = "flip"
flipOp :: Isa.Term
flipOp = conDouble flipS
mkTermAppl :: Isa.Term -> Isa.Term -> Isa.Term
mkTermAppl fun arg = case (fun, arg) of
(App (Const uc _) b _, Tuplex [l, r] _) | new uc == uncurryOpS ->
let res = mkTermAppl (mkTermAppl b l) r in case b of
Const bin _ | elem (new bin) [eq, "existEqualOp", "strongEqualOp"] ->
case isEquallyLifted l r of
Just (_, la, ra) -> mkTermAppl (mkTermAppl (con eqV) la) ra
_ -> if isLifted l || isLifted r
then mkTermAppl (mkTermAppl (con eqV) l) r
else res
_ -> res
(App (Const mp _) f _, Tuplex [a, b] c)
| new mp == "mapFst" -> Tuplex [mkTermAppl f a, b] c
| new mp == "mapSnd" -> Tuplex [a, mkTermAppl f b] c
(Const mp _, Tuplex [a, b] _)
| new mp == "ifImplOp" -> binImpl b a
(Const mp _, Tuplex [Tuplex [a, b] _, c] d)
| new mp == "whenElseOp" -> case isEquallyLifted a c of
Just (f, na, nc) -> mkTermAppl f $ If b na nc d
Nothing -> If b a c d
(App (Const mp _) f c, _)
| new mp == "liftUnit2bool" -> let af = mkTermAppl f unitOp in
case arg of
Const ma _ | new ma == "True" -> af
| new ma == "False" -> false
_ -> If arg af false c
| new mp == "liftUnit2partial" -> let af = mkTermAppl f unitOp in
case arg of
Const ma _ | new ma == "True" -> af
| new ma == "False" -> noneOp
_ -> If arg af noneOp c
(App (Const mp _) _ _, _)
| new mp == "liftUnit2unit" -> arg
| new mp == "lift2unit" -> mkTermAppl (conDouble "partial2bool") arg
(App (App (Const cmp _) f _) g c, _)
| new cmp == compS -> mkTermAppl f $ mkTermAppl g arg
| new cmp == curryOpS -> mkTermAppl f $ Tuplex [g, arg] c
| new cmp == flipS -> mkTermAppl (mkTermAppl f arg) g
(Const d _, App (Const sm _) a _)
| new d == "defOp" && new sm == "makePartial" -> true
| new d == "partial2bool" && new sm == "makePartial" -> true
| new d == "partial2bool" && new sm == "bool2partial"
|| new d == "bool2partial" && new sm == "partial2bool" -> a
| new d == "curryOp" && new sm == uncurryOpS -> a
(Const i _, _)
| new i == "bool2partial" ->
let tc = mkTermAppl mkPartial unitOp
in case arg of
Const j _ | new j == "True" -> tc
| new j == "False" -> noneOp
_ -> termAppl fun arg -- If arg tc noneOp NotCont
| new i == "id" -> arg
| new i == "constTrue" -> true
| new i == "constNil" -> unitOp
(Const i _, Tuplex [] _)
| new i == "partial2bool" -> false
_ -> termAppl fun arg
freshIndex :: State Int Int
freshIndex = do
i <- get
put $ i + 1
return i
type Simplifier = VName
-> Isa.Term -- variable
-> Isa.Term -- simplified application to variable
-> Isa.Term -- simplified argument
-> State Int Isa.Term
simpForOption :: Simplifier
simpForOption l v nF nArg = do
return $ Case nArg
[ (conDouble "None", if new l == "lift2bool" then false else noneOp)
, (termAppl conSome v,
if new l == "mapPartial" then mkTermAppl mkPartial nF else nF)]
simpForPairs :: Simplifier
simpForPairs l v2 nF nArg = do
n <- freshIndex
let v1 = mkFree $ "Xb" ++ show n
return $ Isa.Let [(Tuplex [v1, v2] NotCont, nArg)] $
If v1 (if new l == "mapPartial" then mkTermAppl mkPartial nF else nF)
(if new l == "lift2bool" then false else noneOp) NotCont
simplify :: Simplifier -> Isa.Term -> State Int Isa.Term
simplify simpF trm = case trm of
App (App (Const l _) f _) arg _
| elem (new l) ["lift2bool", "lift2partial", "mapPartial"] -> do
n <- freshIndex
let pvar = mkFree $ "Xc" ++ show n
nF <- simplify simpF $ mkTermAppl f pvar
nArg <- simplify simpF arg
simpF l pvar nF nArg
App f arg c -> do
nF <- simplify simpF f
nArg <- simplify simpF arg
return $ App nF nArg c
Abs v t c -> do
nT <- simplify simpF t
return $ Abs v nT c
_ -> return trm
mkApp :: Env -> Set.Set String -> Set.Set String -> Set.Set VarDecl -> As.Term
-> As.Term -> Result (FunType, Isa.Term)
mkApp sign tyToks toks pVars f arg = do
(fTy, fTrm) <- transTerm sign tyToks toks pVars f
(aTy, aTrm) <- transTerm sign tyToks toks pVars arg
let pv = case arg of -- dummy application of a unit argument
TupleTerm [] _ -> return (fTy, fTrm)
_ -> mkError "wrong function type" f
case fTy of
FunType a r -> do
((rTy, fConv), (_, aConv)) <- adjustTypes a r aTy
return $ (if rTy then makePartialVal r else r,
mkTermAppl (applConv fConv fTrm)
$ applConv aConv aTrm)
PartialVal (FunType a r) -> do
((_, fConv), (_, aConv)) <- adjustTypes a r aTy
let resTy = makePartialVal r
return (resTy, mkTermAppl (mkTermAppl (mkTermAppl
(unpackOp r) $ convFun fConv) fTrm)
$ applConv aConv aTrm)
PartialVal _ -> pv
BoolType -> pv
_ -> mkError "not a function type" f
-- * translation of lambda abstractions
isPatternType :: As.Term -> Bool
isPatternType trm = case trm of
QualVar (VarDecl _ _ _ _) -> True
TypedTerm t _ _ _ -> isPatternType t
TupleTerm ts _ -> all isPatternType ts
_ -> False
transPattern :: Env -> Set.Set String -> Set.Set String -> As.Term
-> Result (FunType, Isa.Term)
transPattern sign tyToks toks pat = do
p@(ty, _) <- transTerm sign tyToks toks Set.empty pat
case pat of
TupleTerm [] _ -> return (ty, mkFree "_")
_ -> if not (isPatternType pat) || isPartialVal ty then
fatal_error ("illegal pattern for Isabelle: " ++ showDoc pat "")
$ getRange pat
else return p
-- form Abs(pattern term)
abstraction :: Env -> Set.Set String -> Set.Set String -> (FunType, Isa.Term)
-> As.Term -> Result (FunType, Isa.Term)
abstraction sign tyToks toks (ty, body) pat = do
(pTy, nPat) <- transPattern sign tyToks toks pat
return (FunType pTy ty, Abs nPat body NotCont)