PPolyTyConsHOL2IsaUtils.hs revision 4ec7cab4c123781b80d5313b660ee71f1835fa91
{- |
Module : $Header$
Description : translating a HasCASL subset to Isabelle
Copyright : (c) C. Maeder, DFKI 2008
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
utility function for translation from HasCASL to Isabelle leaving open how
partial values are interpreted
-}
module Comorphisms.PPolyTyConsHOL2IsaUtils
( mapTheory
, simpForPairs
, simpForOption
, typeToks
, transSentence
, SimpKind (..)
, OldSimpKind (..)
) where
import HasCASL.As as As
import HasCASL.AsUtils
import HasCASL.Builtin
import HasCASL.DataAna
import HasCASL.Le as Le
import HasCASL.Unify (substGen)
import Isabelle.IsaSign as Isa hiding (qname)
import Isabelle.IsaConsts
import Isabelle.IsaPrint
import Isabelle.Translate
import Common.DocUtils
import Common.Id
import Common.Result
import Common.Utils (isSingleton, number)
import Common.Lib.State
import Common.AS_Annotation
import Common.GlobalAnnotations
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.List
import Data.Maybe
import Control.Monad (foldM, zipWithM)
mapTheory :: SimpKind -> Simplifier -> (Env, [Named Le.Sentence])
-> Result (Isa.Sign, [Named Isa.Sentence])
mapTheory simK simpF (env, sens) = do
let tyToks = typeToks env
sign <- transSignature env tyToks
isens <- mapM (mapNamedM $ transSentence env tyToks simK simpF) sens
(dt, _, _) <- foldM (transDataEntries env tyToks)
([], Set.empty, Set.empty) $ filter (not . null) $ map
(\ ns -> case sentence ns of
DatatypeSen ds -> ds
_ -> []) sens
return ( sign { domainTab = reverse dt }
, filter ((/= mkSen true) . sentence) isens)
-- * Signature
baseSign :: BaseSig
baseSign = MainHC_thy
transAssumps :: GlobalAnnos -> Set.Set String -> Assumps -> Result ConstTab
transAssumps ga toks = foldM insertOps Map.empty . Map.toList where
insertOps m (name, ops) =
let chk = isPlainFunType
in case map opType $ Set.toList ops of
[TypeScheme _ op _ ] -> do
ty <- funType op
return $ Map.insert
(mkIsaConstT (isPredType op) ga (chk ty)
name baseSign toks) (transPlainFunType ty) m
infos -> foldM ( \ m' (TypeScheme _ op _, i) -> do
ty <- funType op
return $ Map.insert
(mkIsaConstIT (isPredType op) ga (chk ty)
name i baseSign toks) (transPlainFunType ty) m'
) m $ number infos
-- all possible tokens of mixfix identifiers that must not be used as variables
getAssumpsToks :: Assumps -> Set.Set String
getAssumpsToks = Map.foldWithKey (\ i ops s ->
Set.union s $ Set.unions
$ map (\ (_, o) -> getConstIsaToks i o baseSign)
$ number $ Set.toList ops) Set.empty
typeToks :: Env -> Set.Set String
typeToks =
Set.map (`showIsaTypeT` baseSign) . Map.keysSet . typeMap
transSignature :: Env -> Set.Set String -> Result Isa.Sign
transSignature env toks = do
let extractTypeName tyId typeInfo m =
let getTypeArgs n k = case k of
ClassKind _ -> []
FunKind _ _ r _ ->
(TFree ("'a" ++ show n) [], holType)
: getTypeArgs (n + 1) r
in Map.insert (showIsaTypeT tyId baseSign)
[(isaTerm, getTypeArgs (1 :: Int) $ typeKind typeInfo)] m
ct <- transAssumps (globAnnos env) toks $ assumps env
return $ Isa.emptySign
{ baseSig = baseSign
-- translation of typeconstructors
, tsig = emptyTypeSig
{ arities = Map.foldWithKey extractTypeName Map.empty
$ typeMap env }
, constTab = ct }
-- * translation of a type in an operation declaration
unitTyp :: Typ
unitTyp = Type "unit" holType []
mkPartialType :: Typ -> Typ
mkPartialType arg = Type "partial" [] [arg]
transFunType :: FunType -> Typ
transFunType fty = case fty of
UnitType -> unitTyp
BoolType -> boolType
FunType f a -> mkFunType (transFunType f) $ transFunType a
PartialVal a -> mkPartialType $ transFunType a
PairType a b -> prodType (transFunType a) $ transFunType b
TupleType l -> case l of
[] -> error "transFunType"
_ -> transFunType $ foldl1 PairType l
ApplType tid args -> Type (showIsaTypeT tid baseSign) []
$ map transFunType args
TypeVar tid -> TFree (showIsaTypeT tid baseSign) []
-- compute number of arguments for plain CASL functions
isPlainFunType :: FunType -> Int
isPlainFunType fty = case fty of
FunType f a -> case a of
FunType _ _ -> -1
_ -> case f of
TupleType l -> length l
_ -> 1
_ -> 0
transPlainFunType :: FunType -> Typ
transPlainFunType fty =
case fty of
FunType (TupleType l) a -> case a of
FunType _ _ -> transFunType fty
_ -> foldr (mkFunType . transFunType) (transFunType a) l
_ -> transFunType fty
data FunType = UnitType | BoolType
| FunType FunType FunType
| PartialVal FunType
| PairType FunType FunType -- only used to represent tuples as nested pairs
| TupleType [FunType]
| ApplType Id [FunType]
| TypeVar Id
deriving (Eq, Show)
isPartialVal :: FunType -> Bool
isPartialVal t = case t of
PartialVal _ -> True
BoolType -> True
_ -> False
makePartialVal :: FunType -> FunType
makePartialVal t = if isPartialVal t then t else case t of
UnitType -> BoolType
_ -> PartialVal t
funType :: Type -> Result FunType
funType t = case getTypeAppl t of
(TypeName tid _ n, tys)
| n == 0 -> do
ftys <- mapM funType tys
return $ case ftys of
[] | tid == unitTypeId -> UnitType
[ty] | tid == lazyTypeId -> makePartialVal ty
[t1, t2] | isArrow tid -> FunType t1 $
if isPartialArrow tid then makePartialVal t2 else t2
(_ : _ : _) | isProductId tid -> TupleType ftys
_ -> ApplType tid ftys
| null tys -> return $ TypeVar tid
_ -> fatal_error "funType: no flat type appl" $ getRange t
-- * translation of a datatype declaration
transDataEntries :: Env -> Set.Set String
-> (DomainTab, Set.Set TName, Set.Set VName) -> [DataEntry]
-> Result (DomainTab, Set.Set TName, Set.Set VName)
transDataEntries env tyToks t@(dt, tys, cs) l = do
let rs = map (transDataEntry env tyToks) l
ms = map maybeResult rs
toWarning = map ( \ d -> d { diagKind = Warning })
appendDiags $ toWarning $ concatMap diags rs
if any isNothing ms then return t
else do
let des = catMaybes ms
ntys = map (Isa.typeId . fst) des
ncs = concatMap (map fst . snd) des
foldF str cnv = foldM ( \ s i ->
if Set.member i s then
fail $ "duplicate " ++ str ++ cnv i
else return $ Set.insert i s)
Result d1 mrtys = foldF "datatype " id tys ntys
Result d2 mrcs = foldF "constructor " new cs ncs
appendDiags $ toWarning $ d1 ++ d2
case (mrtys, mrcs) of
(Just rtys, Just rcs) -> return (des : dt, rtys, rcs)
_ -> return t
-- datatype with name (tyId) + args (tyArgs) and alternatives
transDataEntry :: Env -> Set.Set String -> DataEntry -> Result DomainEntry
transDataEntry env tyToks de@(DataEntry _ _ gk _ _ alts) =
let dp@(DataPat _ i tyArgs _ _) = toDataPat de
in case gk of
Le.Free -> do
nalts <- mapM (transAltDefn env tyToks dp) $ Set.toList alts
let transDName ti = Type (showIsaTypeT ti baseSign) []
. map transTypeArg
return (transDName i tyArgs, nalts)
_ -> fatal_error ("not a free type: " ++ show i)
$ posOfId i
-- arguments of a datatype's typeconstructor
transTypeArg :: TypeArg -> Typ
transTypeArg ta = TFree (showIsaTypeT (getTypeVar ta) baseSign) []
-- datatype alternatives/constructors
transAltDefn :: Env -> Set.Set String -> DataPat -> AltDefn
-> Result (VName, [Typ])
transAltDefn env tyToks dp@(DataPat dm _ _ _ _) alt = case alt of
Construct mi origTs p _ -> let ts = map (mapType dm) origTs in
case mi of
Just opId -> case p of
Total -> do
let sc = getConstrScheme dp p origTs
nts <- mapM funType ts
-- extract overloaded opId number
return (transOpId env tyToks opId sc, case nts of
[TupleType l] -> map transFunType l
_ -> map transFunType nts)
Partial -> mkError "not a total constructor" opId
Nothing -> mkError "no support for data subtypes" ts
-- * Formulas
-- variables
transVar :: Set.Set String -> Id -> VName
transVar toks v = let
s = showIsaConstT v baseSign
renVar t = if Set.member t toks then renVar $ "X_" ++ t else t
in mkVName $ renVar s
mkTypedConst :: VName -> FunType -> Isa.Term
mkTypedConst v fTy = Isa.Const v $ Disp (transFunType fTy) NA Nothing
transTypedVar :: Set.Set String -> VarDecl -> Result Isa.Term
transTypedVar toks (VarDecl var ty _ _) = do
fTy <- funType ty
return $ mkTypedConst (transVar toks var) fTy
mkSimplifiedSen :: OldSimpKind -> Simplifier -> Isa.Term -> Isa.Sentence
mkSimplifiedSen simK simpF t = mkSen $ evalState (simplify simK simpF t) 0
isTrue :: Isa.Term -> Bool
isTrue t = case t of
Const n _ -> new n == cTrue
_ -> False
mkBinConj :: Isa.Term -> Isa.Term -> Isa.Term
mkBinConj t1 t2 = case isTrue of
isT | isT t1 -> t2
| isT t2 -> t1
_ -> binConj t1 t2
data OldSimpKind = NoSimpLift | Lift2Restrict | Lift2Case deriving Eq
data SimpKind = New | Old OldSimpKind deriving Eq
transSentence :: Env -> Set.Set String -> SimpKind -> Simplifier -> Le.Sentence
-> Result Isa.Sentence
transSentence sign tyToks simK simpF s = case s of
Le.Formula trm -> do
ITC ty t cs <- transTerm sign tyToks (simK == New)
(getAssumpsToks $ assumps sign) Set.empty trm
let et = case ty of
PartialVal UnitType -> mkTermAppl defOp t
_ -> t
bt = if isTrue et then cond2bool cs else
mkTermAppl (integrateCondInBool cs) et
st = mkSimplifiedSen (case simK of
Old osim -> osim
New -> NoSimpLift) simpF bt
case ty of
BoolType -> return st
PartialVal _ -> return st
FunType _ _ -> error "transSentence: FunType"
PairType _ _ -> error "transSentence: PairType"
TupleType _ -> error "transSentence: TupleType"
ApplType _ _ -> error "transSentence: ApplType"
_ -> return $ mkSen true
DatatypeSen ls -> if all (\ (DataEntry _ _ gk _ _ _) -> gk == Generated) ls
then transSentence sign tyToks simK simpF . Le.Formula
$ inductionScheme ls
else return $ mkSen true
ProgEqSen _ _ (ProgEq _ _ r) -> warning (mkSen true)
"translation of sentence not implemented" r
-- disambiguate operation names
transOpId :: Env -> Set.Set String -> Id -> TypeScheme -> VName
transOpId sign tyToks op ts@(TypeScheme _ ty _) =
let ga = globAnnos sign
Result _ mty = funType ty
in case mty of
Nothing -> error "transOpId"
Just fty ->
let args = isPlainFunType fty
in fromMaybe (error $ "transOpId " ++ show op) $ do
ops <- Map.lookup op (assumps sign)
if isSingleton ops then return $
mkIsaConstT (isPredType ty) ga args op baseSign tyToks
else do
i <- elemIndex ts $ map opType $ Set.toList ops
return $ mkIsaConstIT (isPredType ty)
ga args op (i + 1) baseSign tyToks
transLetEq :: Env -> Set.Set String -> Bool -> Set.Set String
-> Set.Set VarDecl -> ProgEq -> Result ((As.Term, Isa.Term), IsaTermCond)
transLetEq sign tyToks collectConds toks pVars (ProgEq pat trm r) = do
(_, op) <- transPattern sign tyToks toks pat
p@(ITC ty _ _) <- transTerm sign tyToks collectConds toks pVars trm
if isPartialVal ty && not (isQualVar pat) then fatal_error
("rhs must not be partial for a tuple currently: "
++ showDoc trm "") r
else return ((pat, op), p)
transLetEqs :: Env -> Set.Set String -> Bool -> Set.Set String
-> Set.Set VarDecl -> [ProgEq]
-> Result (Set.Set VarDecl, [(Isa.Term, IsaTermCond)])
transLetEqs sign tyToks collectConds toks pVars es = case es of
[] -> return (pVars, [])
e : r -> do
((pat, op), pt@(ITC ty _ _)) <-
transLetEq sign tyToks collectConds toks pVars e
(newPVars, newEs) <- transLetEqs sign tyToks collectConds toks
(if isPartialVal ty then Set.insert (getQualVar pat) pVars else pVars) r
return (newPVars, (op, pt) : newEs)
isQualVar :: As.Term -> Bool
isQualVar trm = case trm of
QualVar (VarDecl {}) -> True
TypedTerm t _ _ _ -> isQualVar t
_ -> False
getQualVar :: As.Term -> VarDecl
getQualVar trm = case trm of
QualVar vd -> vd
TypedTerm t _ _ _ -> getQualVar t
_ -> error "getQualVar"
ifImplOp :: Isa.Term
ifImplOp = conDouble "ifImplOp"
unitOp :: Isa.Term
unitOp = Tuplex [] NotCont
noneOp :: Isa.Term
noneOp = conDouble "undefinedOp"
whenElseOp :: Isa.Term
whenElseOp = conDouble "whenElseOp"
resOp :: Isa.Term
resOp = conDouble "resOp"
makeTotal :: Isa.Term
makeTotal = conDouble "makeTotal"
uncurryOpS :: String
uncurryOpS = "uncurryOp"
curryOpS :: String
curryOpS = "curryOp"
uncurryOp :: Isa.Term
uncurryOp = conDouble uncurryOpS
curryOp :: Isa.Term
curryOp = conDouble curryOpS
for :: Int -> (a -> a) -> a -> a
for n f a = if n <= 0 then a else for (n - 1) f $ f a
data IsaTermCond = ITC FunType Isa.Term Cond
data Cond = None
| Cond Isa.Term
| CondList [Cond]
| PairCond Cond Cond
instance Show Cond where
show c = case c of
None -> "none"
Cond t -> show $ printTerm t
CondList l -> intercalate " & " $ map show l
PairCond p1 p2 -> '(' : shows p1 ", " ++ shows p2 ")"
joinCond :: Cond -> Cond -> Cond
joinCond c1 c2 = let
toCs c = case c of
CondList cs -> cs
None -> []
_ -> [c]
in case toCs c1 ++ toCs c2 of
[] -> None
[s] -> s
cs -> CondList cs
pairCond :: Cond -> Cond -> Cond
pairCond c1 c2 = case (c1, c2) of
(None, None) -> None
_ -> PairCond c1 c2
condToList :: Cond -> [Isa.Term]
condToList c = case c of
None -> []
Cond t -> [t]
CondList cs -> concatMap condToList cs
PairCond c1 c2 -> condToList c1 ++ condToList c2
{- pass tokens that must not be used as variable names and pass those
variables that are partial because they have been computed in a
let-term. -}
transTerm :: Env -> Set.Set String -> Bool -> Set.Set String
-> Set.Set VarDecl -> As.Term -> Result IsaTermCond
transTerm sign tyToks collectConds toks pVars trm = case trm of
QualVar vd@(VarDecl v t _ _) -> do
fTy <- funType t
let vt = con $ transVar toks v
return $ if Set.member vd pVars then ITC (makePartialVal fTy) vt None
else ITC fTy vt None
QualOp _ (PolyId opId _ _) ts@(TypeScheme targs ty _) insts _ _ -> do
fTy <- funType ty
instfTy <- funType $ substGen (if null insts then Map.empty else
Map.fromList $ zipWith (\ (TypeArg _ _ _ _ i _ _) t
-> (i, t)) targs insts) ty
let cf = mkTermAppl (convFun None $ instType fTy instfTy)
unCurry f = let rf = termAppl uncurryOp $ con f in
ITC fTy rf None
return $ case (opId ==) of
is | is trueId -> ITC fTy true None
| is falseId -> ITC fTy false None
| is botId -> case instfTy of
PartialVal t -> ITC t (termAppl makeTotal noneOp) $ Cond false
_ -> ITC instfTy (cf noneOp) None
| is andId -> unCurry conjV
| is orId -> unCurry disjV
| is implId -> unCurry implV
| is infixIf -> ITC fTy ifImplOp None
| is eqvId -> unCurry eqV
| is exEq -> let
ef = cf $ termAppl uncurryOp existEqualOp
in ITC instfTy ef None
| is eqId -> let
ef = cf $ termAppl uncurryOp $ con eqV
in ITC instfTy ef None
| is notId -> ITC fTy notOp None
| is defId -> ITC instfTy (cf defOp) None
| is whenElse -> ITC instfTy (cf whenElseOp) None
| is resId -> ITC instfTy (cf resOp) None
_ -> let
isaId = transOpId sign tyToks opId ts
ef = cf $ for (isPlainFunType fTy - 1) (termAppl uncurryOp)
$ if elem opId [injName, projName] then
mkTypedConst isaId instfTy
else con isaId
in ITC instfTy ef None
QuantifiedTerm quan varDecls phi _ -> do
let qname = case quan of
Universal -> allS
Existential -> exS
Unique -> ex1S
quantify phi' gvd = case gvd of
GenVarDecl vd -> do
vt <- transTypedVar toks vd
return $ termAppl (conDouble qname) $ Abs vt phi' NotCont
GenTypeVarDecl _ -> return phi'
ITC ty psi cs <- fmap integrateCond
$ transTerm sign tyToks collectConds toks pVars phi
psiR <- foldM quantify psi $ reverse varDecls
return $ ITC ty psiR cs
TypedTerm t _q _ty _ -> transTerm sign tyToks collectConds toks pVars t
LambdaTerm pats q body r -> do
p@(ITC ty _ ncs) <- transTerm sign tyToks collectConds toks pVars body
appendDiags $ case q of
Partial -> []
Total -> [Diag Warning
("partial lambda body in total abstraction: "
++ showDoc body "") r
| isPartialVal ty || not (isTrue $ cond2bool ncs) ]
foldM (abstraction sign tyToks toks) (integrateCond p)
$ reverse pats
LetTerm As.Let peqs body _ -> do
(nPVars, nEqs) <-
transLetEqs sign tyToks collectConds toks pVars peqs
ITC bTy bTrm defCs <-
transTerm sign tyToks collectConds toks nPVars body
let pEs = map (\ (p, ITC _ t _) -> (p, t)) nEqs
cs = foldl joinCond None $ map (\ (_, ITC _ _ c) -> c) nEqs
return $ ITC bTy (mkLetAppl pEs bTrm) $ joinCond cs defCs
TupleTerm ts@(_ : _) _ -> do
nTs <- mapM (transTerm sign tyToks collectConds toks pVars) ts
return $ foldl1 ( \ (ITC s p cs) (ITC t e cr) ->
ITC (PairType s t) (Tuplex [p, e] NotCont) $ pairCond cs cr) nTs
TupleTerm [] _ -> return $ ITC UnitType unitOp None
ApplTerm t1 t2 _ -> mkApp sign tyToks collectConds toks pVars t1 t2
_ -> fatal_error ("cannot translate term: " ++ showDoc trm "")
$ getRange trm
integrateCond :: IsaTermCond -> IsaTermCond
integrateCond (ITC ty trm cs) = if isTrue $ cond2bool cs then
ITC ty trm None
else case ty of
PartialVal _ -> ITC ty (mkTermAppl (integrateCondInPartial cs) trm) None
BoolType -> ITC ty (mkTermAppl (integrateCondInBool cs) trm) None
UnitType -> ITC BoolType (cond2bool cs) None
_ -> ITC (makePartialVal ty)
(mkTermAppl (integrateCondInTotal cs) trm) None
-- return partial result type
instType :: FunType -> FunType -> ConvFun
instType f1 f2 = case (f1, f2) of
(TupleType l1, _) -> instType (foldl1 PairType l1) f2
(_, TupleType l2) -> instType f1 $ foldl1 PairType l2
(PartialVal (TypeVar _), BoolType) -> Partial2bool True
(PairType a c, PairType b d) ->
let c2 = instType c d
c1 = instType a b
in mkCompFun (mkMapFun MapSnd c2) $ mkMapFun MapFst c1
(FunType a c, FunType b d) ->
let c2 = instType c d
c1 = instType a b
in mkCompFun (mkResFun c2) $ mkArgFun $ invertConv c1
_ -> IdOp
invertConv :: ConvFun -> ConvFun
invertConv c = case c of
Partial2bool _ -> Bool2partial False
Bool2partial _ -> Partial2bool False
Unit2bool _ -> Bool2unit
Bool2unit -> Unit2bool False
MkPartial _ -> MkTotal
MkTotal -> MkPartial False
MapFun mv cf -> mkMapFun mv $ invertConv cf
ResFun cf -> mkResFun $ invertConv cf
ArgFun cf -> mkArgFun $ invertConv cf
CompFun c1 c2 -> mkCompFun (invertConv c2) (invertConv c1)
_ -> IdOp
data MapFun = MapFst | MapSnd | MapPartial deriving Show
data LiftFun = LiftFst | LiftSnd deriving Show
{- the additional Bool indicates condition integration
Bool2bool and Partial2partial must be mapped to IdOp
if the conditions should be ignored.
Bool2Unit and MkTotal can propagate out conditions -}
data ConvFun =
IdOp
| Bool2partial Bool
| Partial2bool Bool
| Bool2bool
| Unit2bool Bool
| Bool2unit
| Partial2partial
| MkPartial Bool
| MkTotal
| CompFun ConvFun ConvFun
| MapFun MapFun ConvFun
| LiftFun LiftFun ConvFun
| LiftUnit FunType
| LiftPartial FunType
| ResFun ConvFun
| ArgFun ConvFun
deriving Show
isNotIdOp :: ConvFun -> Bool
isNotIdOp f = case f of
IdOp -> False
_ -> True
mkCompFun :: ConvFun -> ConvFun -> ConvFun
mkCompFun f1 f2 = case f1 of
IdOp -> f2
_ -> case f2 of
IdOp -> f1
_ -> CompFun f1 f2
mkMapFun :: MapFun -> ConvFun -> ConvFun
mkMapFun m f = case f of
IdOp -> IdOp
_ -> MapFun m f
mkLiftFun :: LiftFun -> ConvFun -> ConvFun
mkLiftFun lv c = case c of
IdOp -> IdOp
_ -> LiftFun lv c
mapFun :: MapFun -> Isa.Term
mapFun mf = case mf of
MapFst -> mapFst
MapSnd -> mapSnd
MapPartial -> mapPartial
compOp :: Isa.Term
compOp = con compV
convFun :: Cond -> ConvFun -> Isa.Term
convFun cnd cvf = case cvf of
IdOp -> idOp
Bool2partial b -> if b
then metaComp bool2partial $ integrateCondInBool cnd
else bool2partial
Partial2bool b -> if b
then metaComp (integrateCondInBool cnd) defOp
else defOp
Bool2bool -> integrateCondInBool cnd
Unit2bool b -> if b
then metaComp (integrateCondInBool cnd) constTrue else constTrue
Bool2unit -> constNil
Partial2partial -> integrateCondInPartial cnd
MkPartial b -> if b
then integrateCondInTotal cnd
else mkPartial
MkTotal -> makeTotal
LiftUnit rTy -> case rTy of
UnitType -> liftUnit2unit
BoolType -> liftUnit2bool
PartialVal _ -> liftUnit2partial
_ -> liftUnit
LiftPartial rTy ->
case rTy of
UnitType -> lift2unit
BoolType -> lift2bool
PartialVal _ -> lift2partial
_ -> mapPartial
CompFun f1 f2 -> metaComp (convFun cnd f1) $ convFun cnd f2
MapFun mf cv -> mkTermAppl (mapFun mf) $ convFun cnd cv
LiftFun lf cv -> let ccv = convFun cnd cv in case lf of
LiftFst -> metaComp (metaComp uncurryOp flipOp)
$ metaComp (metaComp (mkTermAppl compOp ccv) flipOp)
curryOp
LiftSnd -> metaComp uncurryOp $ metaComp (mkTermAppl compOp ccv)
curryOp
ArgFun cv -> mkTermAppl (termAppl flipOp compOp) $ convFun cnd cv
ResFun cv -> mkTermAppl compOp $ convFun cnd cv
mapFst, mapSnd, mapPartial, idOp, bool2partial, constNil, constTrue,
liftUnit2unit, liftUnit2bool, liftUnit2partial, liftUnit, lift2unit,
lift2bool, lift2partial, mkPartial, restrict :: Isa.Term
mapFst = conDouble "mapFst"
mapSnd = conDouble "mapSnd"
mapPartial = conDouble "mapPartial"
idOp = conDouble "id"
bool2partial = conDouble "bool2partial"
constNil = conDouble "constNil"
constTrue = conDouble "constTrue"
liftUnit2unit = conDouble "liftUnit2unit"
liftUnit2bool = conDouble "liftUnit2bool"
liftUnit2partial = conDouble "liftUnit2partial"
liftUnit = conDouble "liftUnit"
lift2unit = conDouble "lift2unit"
lift2bool = conDouble "lift2bool"
lift2partial = conDouble "lift2partial"
mkPartial = conDouble "makePartial"
restrict = conDouble "restrictOp"
existEqualOp :: Isa.Term
existEqualOp =
con $ VName "existEqualOp" $ Just $ AltSyntax "(_ =e=/ _)" [50, 51] 50
integrateCondInBool :: Cond -> Isa.Term
integrateCondInBool c = let b = cond2bool c in
if isTrue b then idOp else mkTermAppl (con conjV) b
integrateCondInPartial :: Cond -> Isa.Term
integrateCondInPartial c = let b = cond2bool c in
if isTrue b then idOp else
mkTermAppl (mkTermAppl flipOp restrict) b
metaComp :: Isa.Term -> Isa.Term -> Isa.Term
metaComp = mkTermAppl . mkTermAppl compOp
integrateCondInTotal :: Cond -> Isa.Term
integrateCondInTotal c = metaComp (integrateCondInPartial c) mkPartial
addCond :: Isa.Term -> Cond -> Cond
addCond = joinCond . Cond
cond2bool :: Cond -> Isa.Term
cond2bool c = case nub $ condToList c of
[] -> true
ncs -> foldr1 mkBinConj ncs
{- adjust actual argument to expected argument type of function
considering a definedness conditions -}
adjustArgType :: FunType -> FunType -> Result ConvFun
adjustArgType aTy ty = case (aTy, ty) of
(TupleType l, _) -> adjustArgType (foldl1 PairType l) ty
(_, TupleType l) -> adjustArgType aTy $ foldl1 PairType l
(BoolType, BoolType) -> return Bool2bool
(UnitType, UnitType) -> return IdOp
(PartialVal UnitType, BoolType) -> return $ Bool2partial True
(BoolType, PartialVal UnitType) -> return $ Partial2bool True
(UnitType, BoolType) -> return Bool2unit
(BoolType, UnitType) -> return $ Unit2bool True
(PartialVal a, PartialVal b) -> do
c <- adjustArgType a b
return $ mkCompFun Partial2partial c
(a, PartialVal b) -> do
c <- adjustArgType a b
return $ mkCompFun MkTotal c
(PartialVal a, b) -> do
c <- adjustArgType a b
return $ mkCompFun (MkPartial True) c
(PairType e1 e2, PairType a1 a2) -> do
c1 <- adjustArgType e1 a1
c2 <- adjustArgType e2 a2
return . mkCompFun (mkMapFun MapSnd c2) $ mkMapFun MapFst c1
(FunType a b, FunType c d) -> do
aC <- adjustArgType a c -- function a -> c (a fixed)
dC <- adjustArgType b d -- function d -> b (b fixed)
{- (d -> b) o (c -> d) o (a -> c) :: a -> b
do not integrate cond treatment via invertConv . invertConv -}
return . mkCompFun (mkResFun . invertConv $ invertConv dC)
. mkArgFun $ invertConv aC
(TypeVar _, _) -> return IdOp
(_, TypeVar _) -> return IdOp
(ApplType i1 l1, ApplType i2 l2) | i1 == i2 && length l1 == length l2 -> do
l <- zipWithM adjustArgType l1 l2
if any (isNotIdOp . invertConv) l
then fail "cannot adjust type application"
else return IdOp
_ -> fail $ "cannot adjust argument type\n" ++ show (aTy, ty)
unpackOp :: Isa.Term -> Bool -> Bool -> FunType -> ConvFun -> Isa.Term
unpackOp fTrm isPf pfTy ft fConv = let isaF = convFun None fConv in
if isPf then mkTermAppl
(mkTermAppl (conDouble $ case if pfTy then makePartialVal ft else ft of
UnitType -> "unpack2bool"
BoolType -> "unpackBool"
PartialVal _ -> "unpackPartial"
_ -> "unpack2partial") isaF) fTrm
else mkTermAppl isaF fTrm
-- True means function type result was partial
adjustMkApplOrig :: Isa.Term -> Cond -> Bool -> FunType -> FunType
-> IsaTermCond -> Result IsaTermCond
adjustMkApplOrig fTrm fCs isPf aTy rTy (ITC ty aTrm aCs) = do
((pfTy, fConv), (_, aConv)) <- adjustTypes aTy rTy ty
return . ITC (if isPf || pfTy then makePartialVal rTy else rTy)
(mkTermAppl (unpackOp fTrm isPf pfTy rTy fConv)
$ mkTermAppl (convFun None aConv) aTrm) $ joinCond fCs aCs
-- True means require result type to be partial
adjustTypes :: FunType -> FunType -> FunType
-> Result ((Bool, ConvFun), (FunType, ConvFun))
adjustTypes aTy rTy ty = case (aTy, ty) of
(TupleType l, _) -> adjustTypes (foldl1 PairType l) rTy ty
(_, TupleType l) -> adjustTypes aTy rTy $ foldl1 PairType l
(BoolType, BoolType) -> return ((False, IdOp), (ty, IdOp))
(UnitType, UnitType) -> return ((False, IdOp), (ty, IdOp))
(PartialVal _, BoolType) ->
return ((False, IdOp), (aTy, Bool2partial False))
(BoolType, PartialVal _) ->
return ((False, IdOp), (aTy, Partial2bool False))
(_, BoolType) -> return ((True, LiftUnit rTy), (ty, IdOp))
(BoolType, _) -> return ((False, IdOp), (aTy, Unit2bool False))
(PartialVal a, PartialVal b) -> do
q@(fp, (argTy, aTrm)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> (fp, (PartialVal argTy, mkMapFun MapPartial aTrm))
(a, PartialVal b) -> do
q@(_, ap@(argTy, _)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> ((True, LiftPartial rTy), ap)
(PartialVal a, b) -> do
q@(fp, (argTy, aTrm)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> (fp, (PartialVal argTy, mkCompFun (MkPartial False) aTrm))
(PairType a c, PairType b d) -> do
((res2Ty, f2), (arg2Ty, a2)) <- adjustTypes c rTy d
((res1Ty, f1), (arg1Ty, a1)) <- adjustTypes a
(if res2Ty then makePartialVal rTy else rTy) b
return ((res1Ty || res2Ty,
mkCompFun (mkLiftFun LiftFst f1) $ mkLiftFun LiftSnd f2),
(PairType arg1Ty arg2Ty,
mkCompFun (mkMapFun MapSnd a2) $ mkMapFun MapFst a1))
(FunType a c, FunType b d) -> do
((_, aF), (aT, aC)) <- adjustTypes b c a
((cB, cF), (dT, dC)) <- adjustTypes c rTy d
if cB || isNotIdOp cF
then fail "cannot adjust result types of function type"
else return ((False, IdOp), (FunType aT dT,
mkCompFun aF $ mkCompFun (mkResFun dC) $ mkArgFun aC))
(TypeVar _, _) -> return ((False, IdOp), (ty, IdOp))
(_, TypeVar _) -> return ((False, IdOp), (aTy, IdOp))
(ApplType i1 l1, ApplType i2 l2) | i1 == i2 && length l1 == length l2 -> do
l <- mapM (\ (a, b) -> adjustTypes a rTy b) $ zip l1 l2
if any (fst . fst) l || any (isNotIdOp . snd . snd) l
then fail "cannot adjust type application"
else return ((False, IdOp), (ApplType i1 $ map (fst . snd) l, IdOp))
_ -> fail $ "cannot adjust types\n" ++ show (aTy, ty)
adjustMkAppl :: Isa.Term -> Cond -> Bool -> FunType -> FunType
-> IsaTermCond -> Result IsaTermCond
adjustMkAppl fTrm fCs isPf aTy rTy (ITC ty aTrm aCs) = do
aConv <- adjustArgType aTy ty
let (natrm, nacs) = applConv aConv (aTrm, aCs)
(nftrm, nfcs) = if isPf
then (mkTermAppl makeTotal fTrm, addCond (mkTermAppl defOp fTrm) fCs)
else (fTrm, fCs)
return $ ITC rTy (mkTermAppl nftrm natrm) $ joinCond nfcs nacs
applConv :: ConvFun -> (Isa.Term, Cond) -> (Isa.Term, Cond)
applConv cnv (t, c) = let
rt = mkTermAppl (convFun c cnv) t
r = (rt, c)
rb = (rt, None)
in case cnv of
IdOp -> (t, c)
Bool2partial b -> if b then rb else r
Partial2bool b -> if b then rb else r
Bool2bool -> rb
Unit2bool b -> if b then rb else r
Bool2unit -> (rt, addCond t c)
Partial2partial -> rb
MkPartial b -> if b then rb else r
MkTotal -> (rt, addCond (mkTermAppl defOp t) c)
CompFun f1 f2 -> applConv f1 $ applConv f2 (t, c)
MapFun mf cv -> case t of
Tuplex [t1, t2] _ -> let
(c1, c2) = case c of
PairCond p1 p2 -> (p1, p2)
_ -> (c, c)
in case mf of
MapFst -> let
(nt1, nc1) = applConv cv (t1, c1)
in (Tuplex [nt1, t2] NotCont, PairCond nc1 c2)
MapSnd -> let
(nt2, nc2) = applConv cv (t2, c2)
in (Tuplex [t1, nt2] NotCont, PairCond c1 nc2)
MapPartial -> r
_ -> r
_ -> r
mkArgFun :: ConvFun -> ConvFun
mkArgFun c = case c of
IdOp -> c
Bool2bool -> c
Partial2partial -> c
_ -> ArgFun c
mkResFun :: ConvFun -> ConvFun
mkResFun c = case c of
IdOp -> c
Bool2bool -> c
Partial2partial -> c
_ -> ResFun c
isEquallyLifted :: Isa.Term -> Isa.Term -> Maybe (Isa.Term, Isa.Term, Isa.Term)
isEquallyLifted l r = case (l, r) of
(App ft@(Const f _) la _,
App (Const g _) ra _)
| f == g && elem (new f) ["makePartial", "bool2partial"]
-> Just (ft, la, ra)
_ -> Nothing
isLifted :: Isa.Term -> Bool
isLifted t = case t of
App (Const f _) _ _ | new f == "makePartial" -> True
_ -> False
splitArg :: Isa.Term -> (Isa.Term, Isa.Term)
splitArg arg = case arg of
App (App (Const n _) p _) b _ | new n == "restrictOp" ->
case p of
App (Const pp _) t _ | new pp == "makePartial"
-> (b, t)
_ -> (mkBinConj b $ mkTermAppl defOp p, mkTermAppl makeTotal p)
_ -> (mkTermAppl defOp arg, mkTermAppl makeTotal arg)
flipS :: String
flipS = "flip"
flipOp :: Isa.Term
flipOp = conDouble flipS
mkTermAppl :: Isa.Term -> Isa.Term -> Isa.Term
mkTermAppl fun arg = case (fun, arg) of
(App (Const uc _) b _, Tuplex [l, r] _) | new uc == uncurryOpS ->
let res = mkTermAppl (mkTermAppl b l) r in case b of
Const bin _ | elem (new bin) [eq, "existEqualOp"] ->
case isEquallyLifted l r of
Just (_, la, ra) -> mkTermAppl (mkTermAppl (con eqV) la) ra
_ -> if isLifted l || isLifted r
then mkTermAppl (mkTermAppl (con eqV) l) r
else let
(lb, lt) = splitArg l
(rb, rt) = splitArg r
in if new bin == "existEqualOp" then
mkBinConj lb $ mkBinConj rb
$ mkTermAppl (mkTermAppl (con eqV) lt) rt
else res
_ -> res
(App (Const mp _) f _, Tuplex [a, b] c)
| new mp == "mapFst" -> Tuplex [mkTermAppl f a, b] c
| new mp == "mapSnd" -> Tuplex [a, mkTermAppl f b] c
(Const mp _, Tuplex [a, b] _)
| new mp == "ifImplOp" -> binImpl b a
(Const mp _, Tuplex [Tuplex [a, b] _, c] d)
| new mp == "whenElseOp" -> case isEquallyLifted a c of
Just (f, na, nc) -> mkTermAppl f $ If b na nc d
Nothing -> If b a c d
(App (Const mp _) f _, App (Const mp2 _) arg2 _)
| new mp == "mapPartial" && new mp2 == "makePartial" ->
mkTermAppl mkPartial $ mkTermAppl f arg2
(App (Const mp _) f c, _)
| new mp == "liftUnit2bool" -> let af = mkTermAppl f unitOp in
case arg of
Const ma _ | isTrue arg -> af
| new ma == cFalse -> false
_ -> If arg af false c
| new mp == "liftUnit2partial" -> let af = mkTermAppl f unitOp in
case arg of
Const ma _ | isTrue arg -> af
| new ma == cFalse -> noneOp
_ -> If arg af noneOp c
(App (Const mp _) _ _, _)
| new mp == "liftUnit2unit" -> arg
| new mp == "lift2unit" -> mkTermAppl defOp arg
(App (App (Const cmp _) f _) g c, _)
| new cmp == compS -> mkTermAppl f $ mkTermAppl g arg
| new cmp == curryOpS -> mkTermAppl f $ Tuplex [g, arg] c
| new cmp == flipS -> mkTermAppl (mkTermAppl f arg) g
(Const d _, App (Const sm _) a _)
| new d == defOpS && new sm == "makePartial" -> true
| new d == defOpS && new sm == "bool2partial"
|| new d == "bool2partial" && new sm == defOpS -> a
| new d == curryOpS && new sm == uncurryOpS -> a
(Const i _, _)
| new i == "bool2partial" ->
let tc = mkTermAppl mkPartial unitOp
in case arg of
Const j _ | isTrue arg -> tc
| new j == cFalse -> noneOp
_ -> termAppl fun arg -- If arg tc noneOp NotCont
| new i == "id" -> arg
| new i == "constTrue" -> true
| new i == "constNil" -> unitOp
(Const i _, Tuplex [] _)
| new i == defOpS -> false
_ -> termAppl fun arg
freshIndex :: State Int Int
freshIndex = do
i <- get
put $ i + 1
return i
type Simplifier = VName
-> Isa.Term -- variable
-> Isa.Term -- simplified application to variable
-> Isa.Term -- simplified argument
-> State Int Isa.Term
simpForOption :: Simplifier
simpForOption l v nF nArg =
return $ Case nArg
[ (conDouble "None", if new l == "lift2bool" then false else noneOp)
, (termAppl conSome v,
if new l == "mapPartial" then mkTermAppl mkPartial nF else nF)]
mkLetAppl :: [(Isa.Term, Isa.Term)] -> Isa.Term -> Isa.Term
mkLetAppl eqs inTrm = case inTrm of
App (Const mp _) arg _ | new mp == "makePartial" ->
mkTermAppl mkPartial $ Isa.Let eqs arg
_ -> Isa.Let eqs inTrm
simpForPairs :: Simplifier
simpForPairs l v2 nF nArg = do
n <- freshIndex
let v1 = mkFree $ "Xb" ++ show n
return $ mkLetAppl [(Tuplex [v1, v2] NotCont, nArg)] $
If v1 (if new l == "mapPartial" then mkTermAppl mkPartial nF else nF)
(if new l == "lift2bool" then false else noneOp) NotCont
simplify :: OldSimpKind -> Simplifier -> Isa.Term -> State Int Isa.Term
simplify simK simpF trm = case trm of
App (App (Const l _) f _) arg _
| simK /= NoSimpLift && elem (new l)
["lift2bool", "lift2partial", "mapPartial"] -> do
nArg <- simplify simK simpF arg
let lf = new l
res = simK == Lift2Restrict
if res && lf == "lift2partial" then return . mkTermAppl
(mkTermAppl restrict . mkTermAppl f $ mkTermAppl makeTotal nArg)
$ mkTermAppl defOp nArg
else if res && lf == "mapPartial" then return . mkTermAppl
(mkTermAppl restrict . mkTermAppl mkPartial
. mkTermAppl f $ mkTermAppl makeTotal nArg)
$ mkTermAppl defOp nArg
else do
n <- freshIndex
let pvar = mkFree $ "Xc" ++ show n
nF <- simplify simK simpF $ mkTermAppl f pvar
simpF l pvar nF nArg
App f arg c -> do
nF <- simplify simK simpF f
nArg <- simplify simK simpF arg
return $ App nF nArg c
Abs v t c -> do
nT <- simplify simK simpF t
return $ Abs v nT c
_ -> return trm
mkApp :: Env -> Set.Set String -> Bool -> Set.Set String
-> Set.Set VarDecl -> As.Term -> As.Term -> Result IsaTermCond
mkApp sign tyToks collectConds toks pVars f arg = do
fTr@(ITC fTy fTrm fCs) <-
transTerm sign tyToks collectConds toks pVars f
aTr <- transTerm sign tyToks collectConds toks pVars arg
let pv = case arg of -- dummy application of a unit argument
TupleTerm [] _ -> return fTr
_ -> mkError "wrong function type" f
adjstAppl = if collectConds then adjustMkAppl else adjustMkApplOrig
adjustPos (getRange [f, arg]) $ case fTy of
FunType a r -> adjstAppl fTrm fCs False a r aTr
PartialVal (FunType a r) -> adjstAppl fTrm fCs True a r aTr
PartialVal _ -> pv
BoolType -> pv
_ -> mkError "not a function type" f
-- * translation of lambda abstractions
isPatternType :: As.Term -> Bool
isPatternType trm = case trm of
QualVar (VarDecl {}) -> True
TypedTerm t _ _ _ -> isPatternType t
TupleTerm ts _ -> all isPatternType ts
_ -> False
transPattern :: Env -> Set.Set String -> Set.Set String -> As.Term
-> Result (FunType, Isa.Term)
transPattern sign tyToks toks pat = do
ITC ty trm cs <- transTerm sign tyToks False toks Set.empty pat
case pat of
TupleTerm [] _ -> return (ty, mkFree "_")
_ -> if not (isPatternType pat) || isPartialVal ty
|| case cs of
None -> False
_ -> True then
fatal_error ("illegal pattern for Isabelle: " ++ showDoc pat "")
$ getRange pat
else return (ty, trm)
-- form Abs(pattern term)
abstraction :: Env -> Set.Set String -> Set.Set String
-> IsaTermCond -> As.Term -> Result IsaTermCond
abstraction sign tyToks toks (ITC ty body cs) pat = do
(pTy, nPat) <- transPattern sign tyToks toks pat
return $ ITC (FunType pTy ty) (Abs nPat body NotCont) cs