PCoClTyConsHOL2IsabelleHOL.hs revision 81eaac399d69af15425d06b054e5d0331dbc132b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
{- |
Module : $Header$
Copyright : (c) C. Maeder, DFKI 2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The embedding comorphism from HasCASL to Isabelle-HOL.
-}
(PCoClTyConsHOL2IsabelleHOL(..)) where
import Logic.Logic as Logic
import Logic.Comorphism
import HasCASL.Logic_HasCASL
import HasCASL.Sublogic
import HasCASL.Le as Le
import HasCASL.As as As
import HasCASL.AsUtils
import HasCASL.Builtin
import HasCASL.Unify
import Isabelle.IsaSign as Isa
import Isabelle.IsaConsts
import Isabelle.Logic_Isabelle
import Isabelle.Translate
import Common.DocUtils
import Common.Id
import Common.Result
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.AS_Annotation
import Common.GlobalAnnotations
import Data.List (elemIndex)
import Data.Maybe (catMaybes, isNothing)
import Control.Monad (foldM)
-- | The identity of the comorphism
data PCoClTyConsHOL2IsabelleHOL = PCoClTyConsHOL2IsabelleHOL deriving Show
instance Language PCoClTyConsHOL2IsabelleHOL -- default definition is okay
instance Comorphism PCoClTyConsHOL2IsabelleHOL
HasCASL Sublogic
BasicSpec Le.Sentence SymbItems SymbMapItems
Env Morphism
Symbol RawSymbol ()
Isabelle () () Isa.Sentence () ()
IsabelleMorphism () () () where
sourceLogic PCoClTyConsHOL2IsabelleHOL = HasCASL
sourceSublogic PCoClTyConsHOL2IsabelleHOL = noSubtypes
targetLogic PCoClTyConsHOL2IsabelleHOL = Isabelle
mapSublogic PCoClTyConsHOL2IsabelleHOL _ = ()
map_theory PCoClTyConsHOL2IsabelleHOL (env, sens) = do
sign <- transSignature env
isens <- mapM (mapNamedM $ transSentence env) sens
$ filter (not . null) $ map
( \ ns -> case sentence ns of
DatatypeSen ds -> ds
_ -> []) sens
return (sign { domainTab = reverse dt }, isens)
map_morphism = mapDefaultMorphism
map_sentence PCoClTyConsHOL2IsabelleHOL sign phi =
transSentence sign phi
map_symbol = errMapSymbol
-- * Signature
baseSign :: BaseSig
baseSign = MainHC_thy
transAssumps :: GlobalAnnos -> Assumps -> Result ConstTab
transAssumps ga = foldM insertOps Map.empty . Map.toList where
insertOps m (name, ops) =
let chk t = isPlainFunType t
in case opInfos ops of
[info] -> do
ty <- transOpInfo info
return $ Map.insert
(mkIsaConstT False ga (chk ty)
name baseSign) (transPlainFunType ty) m
infos -> foldM ( \ m' (i, info) -> do
ty <- transOpInfo info
return $ Map.insert
(mkIsaConstIT False ga (chk ty)
name i baseSign) (transPlainFunType ty) m'
) m $ zip [1..] infos
transSignature :: Env -> Result Isa.Sign
transSignature env = do
ct <- transAssumps (globAnnos env) $ assumps env
let extractTypeName tyId typeInfo m =
let getTypeArgs n k = case k of
ClassKind _ -> []
FunKind _ _ r _ ->
(TFree ("'a" ++ show n) [], [isaTerm])
: getTypeArgs (n + 1) r
in Map.insert (showIsaTypeT tyId baseSign)
[(isaTerm, getTypeArgs (1 :: Int) $ typeKind typeInfo)] m
return $ Isa.emptySign
{ baseSig = baseSign
-- translation of typeconstructors
, tsig = emptyTypeSig
{ arities = Map.foldWithKey extractTypeName
(typeMap env) }
, constTab = ct }
-- * translation of a type in an operation declaration
-- extract type from OpInfo
transOpInfo :: OpInfo -> Result FunType
transOpInfo oi = case opType oi of
TypeScheme _ op _ -> funType op
unitTyp :: Typ
unitTyp = Type "unit" holType []
-- types
transType :: Type -> Result Typ
transType = fmap transPlainFunType . funType
transFunType :: FunType -> Typ
transFunType fty = case fty of
UnitType -> unitTyp
BoolType -> boolType
FunType f a -> mkFunType (transFunType f) $ transFunType a
PartialVal a -> mkOptionType $ transFunType a
PairType a b -> prodType (transFunType a) $ transFunType b
TupleType l -> transFunType $ foldl1 PairType l
ApplType tid args -> Type (showIsaTypeT tid baseSign) []
$ map transFunType args
TypeVar tid -> TFree (showIsaTypeT tid baseSign) []
-- compute number of arguments for plain CASL functions
isPlainFunType :: FunType -> Int
isPlainFunType fty = case fty of
FunType f a -> case a of
FunType _ _ -> -1
_ -> case f of
TupleType l -> length l
_ -> 1
_ -> 0
transPlainFunType :: FunType -> Typ
transPlainFunType fty =
case fty of
FunType (TupleType l) a -> case a of
FunType _ _ -> transFunType fty
_ -> foldr mkFunType (transFunType a)
$ map transFunType l
_ -> transFunType fty
data FunType = UnitType | BoolType | FunType FunType FunType
| PartialVal FunType | PairType FunType FunType
| TupleType [FunType]
| ApplType Id [FunType] | TypeVar Id
deriving Eq
isPartialVal :: FunType -> Bool
isPartialVal t = case t of
PartialVal _ -> True
BoolType -> True
_ -> False
makePartialVal :: FunType -> FunType
makePartialVal t = if isPartialVal t then t else case t of
UnitType -> BoolType
_ -> PartialVal t
funType :: Type -> Result FunType
funType t = case getTypeAppl t of
(TypeName tid _ n, tys) ->
if n == 0 then do
ftys <- mapM funType tys
return $ case ftys of
[] | tid == unitTypeId -> UnitType
[ty] | tid == lazyTypeId -> makePartialVal ty
[t1, t2] | isArrow tid -> FunType t1 $
if isPartialArrow tid then makePartialVal t2 else t2
(_ : _ : _) | isProductId tid -> TupleType ftys
_ -> ApplType tid ftys
else if null tys then return $ TypeVar tid
else fatal_error "funType: no higher kinds" $ posOfId tid
_ -> fatal_error "funType: no type appl" $ getRange t
-- * translation of a datatype declaration
transDataEntries env t@(dt, tys, cs) l = do
let rs = map (transDataEntry env) l
ms = map maybeResult rs
toWarning = map ( \ d -> d { diagKind = Warning })
appendDiags $ toWarning $ concatMap diags rs
if any isNothing ms then return t
else do
let des = catMaybes ms
ntys = map (Isa.typeId . fst) des
ncs = concatMap (map fst . snd) des
foldF str cnv = foldM ( \ s i ->
if Set.member i s then
fail $ "duplicate " ++ str ++ cnv i
else return $ Set.insert i s)
Result d1 mrtys = foldF "datatype " id tys ntys
Result d2 mrcs = foldF "constructor " new cs ncs
appendDiags $ toWarning $ d1 ++ d2
case (mrtys, mrcs) of
(Just rtys, Just rcs) -> return (des : dt, rtys, rcs)
_ -> return t
-- datatype with name (tyId) + args (tyArgs) and alternatives
transDataEntry :: Env -> DataEntry -> Result DomainEntry
transDataEntry env (DataEntry tm tyId gk tyArgs rk alts) =
let i = Map.findWithDefault tyId tyId tm
dt = patToType i tyArgs rk
in case gk of
Le.Free -> do
nalts <- mapM (transAltDefn env tm tyArgs dt i) alts
let transDName ti ta = Type (showIsaTypeT ti baseSign) []
$ map transTypeArg ta
return (transDName i tyArgs, nalts)
_ -> fatal_error ("not a free type: " ++ show i)
$ posOfId i
-- arguments of a datatype's typeconstructor
transTypeArg :: TypeArg -> Typ
transTypeArg ta = TFree (showIsaTypeT (getTypeVar ta) baseSign) []
-- datatype alternatives/constructors
transAltDefn :: Env -> IdMap -> [TypeArg] -> Type -> Id -> AltDefn
-> Result (VName, [Typ])
transAltDefn env tm args dt tyId alt = case alt of
Construct (Just opId) ts Total _ -> do
let mTs = map (mapType tm) ts
sc = TypeScheme args (getFunType dt Total mTs) nullRange
nts <- mapM funType mTs
-- extract overloaded opId number
return (transOpId env opId sc, case nts of
[TupleType l] -> map transFunType l
_ -> map transFunType nts)
_ -> fatal_error ("not a total constructor: " ++ show tyId)
$ posOfId tyId
-- * Formulas
-- simple variables
transVar :: Var -> VName
transVar v = mkVName $ showIsaConstT v baseSign
transSentence :: Env -> Le.Sentence -> Result Isa.Sentence
transSentence sign s = case s of
Le.Formula trm -> do
(ty, t) <- transTerm sign trm
case ty of
BoolType -> return $ mkSen t
PartialVal _ -> return $ mkSen $ mkTermAppl option2bool t
FunType _ _ -> error "transSentence: FunType"
PairType _ _ -> error "transSentence: PairType"
TupleType _ -> error "transSentence: TupleType"
ApplType _ _ -> error "transSentence: ApplType"
_ -> return $ mkSen true
DatatypeSen _ -> return $ mkSen true
ProgEqSen _ _ (ProgEq _ _ r) -> warning (mkSen true)
"translation of sentence not implemented"
r
-- disambiguate operation names
transOpId :: Env -> UninstOpId -> TypeScheme -> VName
transOpId sign op ts@(TypeScheme _ ty _) =
let ga = globAnnos sign
Result _ mty = funType ty
in case mty of
Nothing -> error "transOpId"
Just fty ->
let args = isPlainFunType fty
in case (do
ops <- Map.lookup op (assumps sign)
if isSingle (opInfos ops) then return $
mkIsaConstT False ga args op baseSign
else do i <- elemIndex ts (map opType (opInfos ops))
return $ mkIsaConstIT False ga args op (i+1) baseSign) of
Just str -> str
Nothing -> error $ "transOpId " ++ showIsaConstT op baseSign
transProgEq sign (ProgEq pat trm r) = do
op <- transPattern sign pat
(ty, ot) <- transTerm sign trm
if isPartialVal ty then fatal_error
("rhs must not be partial currently: " ++ showDoc trm "") r
else return (op, ot)
ifImplOp :: Isa.Term
ifImplOp = conDouble "ifImplOp"
unitOp :: Isa.Term
unitOp = Tuplex [] NotCont
noneOp :: Isa.Term
noneOp = conDouble "None"
exEqualOp :: Isa.Term
exEqualOp = conDouble "exEqualOp"
whenElseOp :: Isa.Term
whenElseOp = conDouble "whenElseOp"
uncurryOpS :: String
uncurryOpS = "uncurryOp"
uncurryOp :: Isa.Term
uncurryOp = conDouble uncurryOpS
for :: Int -> (a -> a) -> a -> a
for n f a = if n <= 0 then a else for (n - 1) f $ f a
-- terms
transTerm sign trm = case trm of
QualVar (VarDecl var t _ _) -> do
fTy <- funType t
return (fTy, Isa.Free (transVar var) $ transFunType fTy)
QualOp _ (InstOpId opId is _) ts@(TypeScheme targs ty _) _ -> do
fTy <- funType ty
instfTy <- funType $ subst (if null is then Map.empty else
Map.fromList $ zipWith (\ (TypeArg _ _ _ _ i _ _) t
-> (i, t)) targs is) ty
let cf = mkTermAppl (convFun $ instType fTy instfTy)
unCurry f = (fTy, termAppl uncurryOp $ con f)
return $ case () of
()
| opId == trueId -> (fTy, true)
| opId == falseId -> (fTy, false)
| opId == botId -> (fTy, noneOp)
| opId == andId -> unCurry conjV
| opId == orId -> unCurry disjV
| opId == implId -> unCurry implV
| opId == infixIf -> (fTy, ifImplOp)
| opId == eqvId -> unCurry eqV
| opId == exEq -> (fTy, exEqualOp)
| opId == eqId -> (instfTy, cf $ termAppl uncurryOp $ con eqV)
| opId == notId -> (fTy, notOp)
| opId == defId -> (instfTy, cf $ defOp)
| opId == whenElse -> (fTy, whenElseOp)
| otherwise -> (instfTy,
cf $ (for (isPlainFunType fTy - 1)
$ termAppl uncurryOp)
$ con $ transOpId sign opId ts)
QuantifiedTerm quan varDecls phi _ -> do
let qname = case quan of
Universal -> allS
Existential -> exS
Unique -> ex1S
quantify phi' gvd = case gvd of
GenVarDecl (VarDecl var typ _ _) -> do
ty <- transType typ
return $ termAppl (conDouble $ qname)
$ Abs (con $ transVar var)
ty phi' NotCont
GenTypeVarDecl _ -> return phi'
(ty, psi) <- transTerm sign phi
psiR <- foldM quantify psi $ reverse varDecls
return (ty, psiR)
TypedTerm t _q _ty _ -> transTerm sign t
LambdaTerm pats q body r -> do
p@(ty, _) <- transTerm sign body
pt <- case q of
Partial -> return p
Total -> if isPartialVal ty
then fatal_error
("partial lambda body in total abstraction: "
++ showDoc body "") r
else return p
foldM (abstraction sign) pt $ reverse pats
LetTerm As.Let peqs body _ -> do
(bTy, bTrm) <- transTerm sign body
nEqs <- mapM (transProgEq sign) peqs
return (bTy, Isa.Let nEqs bTrm)
TupleTerm ts@(_ : _) _ -> do
nTs <- mapM (transTerm sign) ts
return $ foldl1 ( \ (s, p) (t, e) ->
(PairType s t, Tuplex [p, e] NotCont)) nTs
TupleTerm [] _ -> return (UnitType, unitOp)
ApplTerm t1 t2 _ -> mkApp sign t1 t2 -- transAppl sign Nothing t1 t2
_ -> fatal_error ("cannot translate term: " ++ showDoc trm "")
$ getRange trm
instType :: FunType -> FunType -> ConvFun
instType f1 f2 = case (f1, f2) of
(TupleType l1, _) -> instType (foldl1 PairType l1) f2
(_, TupleType l2) -> instType f1 $ foldl1 PairType l2
(PartialVal (TypeVar _), BoolType) -> Option2bool
(PairType a c, PairType b d) ->
let c2 = instType c d
c1 = instType a b
in mkCompFun (mkMapFun MapSnd c2) $ mkMapFun MapFst c1
(FunType a c, FunType b d) ->
let c2 = instType c d
c1 = instType a b
in mkCompFun (mkResFun c2) $ mkArgFun $ invertConv c1
_ -> IdOp
invertConv :: ConvFun -> ConvFun
invertConv c = case c of
Option2bool -> Bool2option
MapFun mv cf -> MapFun mv $ invertConv cf
ResFun cf -> ResFun $ invertConv cf
ArgFun cf -> ArgFun $ invertConv cf
CompFun c1 c2 -> CompFun (invertConv c2) (invertConv c1)
_ -> IdOp
data MapFun = MapFst | MapSnd | MapSome
data LiftFun = LiftFst | LiftSnd
data ConvFun = IdOp | CompFun ConvFun ConvFun | ConstNil | ConstTrue | SomeOp
| MapFun MapFun ConvFun | LiftFun LiftFun ConvFun
| LiftUnit FunType
| LiftSome FunType
| ResFun ConvFun | ArgFun ConvFun | Bool2option | Option2bool
isNotIdOp :: ConvFun -> Bool
isNotIdOp f = case f of
IdOp -> False
_ -> True
mkCompFun :: ConvFun -> ConvFun -> ConvFun
mkCompFun f1 f2 = case f1 of
IdOp -> f2
_ -> case f2 of
IdOp -> f1
_ -> CompFun f1 f2
mkMapFun :: MapFun -> ConvFun -> ConvFun
mkMapFun m f = case f of
IdOp -> IdOp
_ -> MapFun m f
mkLiftFun :: LiftFun -> ConvFun -> ConvFun
mkLiftFun lv c = case c of
IdOp -> IdOp
_ -> LiftFun lv c
liftFun :: LiftFun -> Isa.Term
liftFun lf = case lf of
LiftFst -> liftFst
LiftSnd -> liftSnd
mapFun :: MapFun -> Isa.Term
mapFun mf = case mf of
MapFst -> mapFst
MapSnd -> mapSnd
MapSome -> mapSome
compOp :: Isa.Term
compOp = con compV
convFun :: ConvFun -> Isa.Term
convFun cvf = case cvf of
IdOp -> idOp
Bool2option -> bool2option
Option2bool -> option2bool
LiftUnit rTy -> case rTy of
UnitType -> liftUnit2unit
BoolType -> liftUnit2bool
PartialVal _ -> liftUnit2option
_ -> liftUnit
LiftSome rTy ->
case rTy of
UnitType -> lift2unit
BoolType -> lift2bool
PartialVal _ -> lift2option
_ -> lift
CompFun f1 f2 ->
mkTermAppl (mkTermAppl compOp $ convFun f1) $ convFun f2
ConstNil -> constNil
ConstTrue -> constTrue
SomeOp -> conSome
MapFun mf cv -> mkTermAppl (mapFun mf) $ convFun cv
LiftFun lf cv -> mkTermAppl (liftFun lf) $ convFun cv
ArgFun cv -> mkTermAppl (termAppl flipOp compOp) $ convFun cv
ResFun cv -> mkTermAppl compOp $ convFun cv
liftFst, liftSnd, mapFst, mapSnd, mapSome, idOp, bool2option,
option2bool, constNil, constTrue,
liftUnit2unit, liftUnit2bool, liftUnit2option, liftUnit, lift2unit,
lift2bool, lift2option, lift :: Isa.Term
liftFst = conDouble "liftFst"
liftSnd = conDouble "liftSnd"
mapFst = conDouble "mapFst"
mapSnd = conDouble "mapSnd"
mapSome = conDouble "mapSome"
idOp = conDouble "id"
bool2option = conDouble "bool2option"
option2bool = conDouble "option2bool"
constNil = conDouble "constNil"
constTrue = conDouble "constTrue"
liftUnit2unit = conDouble "liftUnit2unit"
liftUnit2bool = conDouble "liftUnit2bool"
liftUnit2option = conDouble "liftUnit2option"
liftUnit = conDouble "liftUnit"
lift2unit = conDouble "lift2unit"
lift2bool = conDouble "lift2bool"
lift2option = conDouble "lift2option"
lift = conDouble "mapSome"
unpackOp :: FunType -> Isa.Term
unpackOp ft = case ft of
UnitType -> conDouble "unpack2bool"
BoolType -> conDouble "unpackBool"
PartialVal _ -> conDouble "unpackOption"
_ -> conDouble "unpack2option"
-- True means require result type to be partial
adjustTypes :: FunType -> FunType -> FunType
-> Result ((Bool, ConvFun), (FunType, ConvFun))
adjustTypes aTy rTy ty = case (aTy, ty) of
(TupleType l, _) -> adjustTypes (foldl1 PairType l) rTy ty
(_, TupleType l) -> adjustTypes aTy rTy $ foldl1 PairType l
(BoolType, BoolType) -> return ((False, IdOp), (ty, IdOp))
(UnitType, UnitType) -> return ((False, IdOp), (ty, IdOp))
(PartialVal _, BoolType) -> return ((False, IdOp), (aTy, Bool2option))
(BoolType, PartialVal _) -> return ((False, IdOp), (aTy, Option2bool))
(_, BoolType) -> return ((True, LiftUnit rTy), (ty, IdOp))
(BoolType, _) -> return ((False, IdOp), (aTy, ConstTrue))
(PartialVal a, PartialVal b) -> do
q@(fp, (argTy, aTrm)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> (fp, (PartialVal argTy, mkMapFun MapSome aTrm))
(a, PartialVal b) -> do
q@(_, ap@(argTy, _)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> ((True, LiftSome rTy), ap)
(PartialVal a, b) -> do
q@(fp, (argTy, aTrm)) <- adjustTypes a rTy b
return $ case argTy of
PartialVal _ -> q
_ -> (fp, (PartialVal argTy, mkCompFun SomeOp aTrm))
(PairType a c, PairType b d) -> do
((res2Ty, f2), (arg2Ty, a2)) <- adjustTypes c rTy d
((res1Ty, f1), (arg1Ty, a1)) <- adjustTypes a
(if res2Ty then makePartialVal rTy else rTy) b
return $ ((res1Ty || res2Ty,
mkCompFun (mkLiftFun LiftFst f1) $ mkLiftFun LiftSnd f2),
(PairType arg1Ty arg2Ty,
mkCompFun (mkMapFun MapSnd a2) $ mkMapFun MapFst a1))
(FunType a c, FunType b d) -> do
((_, aF), (aT, aC)) <- adjustTypes b c a
((cB, cF), (dT, dC)) <- adjustTypes c rTy d
if cB || isNotIdOp cF
then fail "cannot adjust result types of function type"
else return ((False, IdOp),
(FunType aT dT,
mkCompFun aF $ mkCompFun (mkResFun dC) $ mkArgFun aC))
(TypeVar _, _) -> return ((False, IdOp), (ty, IdOp))
(_, TypeVar _) -> return ((False, IdOp), (aTy, IdOp))
(ApplType i1 l1, ApplType i2 l2) | i1 == i2 && length l1 == length l2
-> do l <- mapM (\ (a, b) -> adjustTypes a rTy b) $ zip l1 l2
if or (map (fst . fst) l) || or
(map (isNotIdOp . snd . snd) l)
then fail "cannot adjust type application"
else return ((False, IdOp),
(ApplType i1 $ map (fst . snd) l, IdOp))
_ -> fail "cannot adjust types"
applConv cnv t = case cnv of
IdOp -> t
_ -> mkTermAppl (convFun cnv) t
mkArgFun :: ConvFun -> ConvFun
mkArgFun c = case c of
IdOp -> c
_ -> ArgFun c
mkResFun :: ConvFun -> ConvFun
mkResFun c = case c of
IdOp -> c
_ -> ResFun c
isEquallyLifted l r = case (l, r) of
(App ft@(Const f _) la _,
App (Const g _) ra _)
| f == g && elem (new f) [someS, "option2bool", "bool2option"]
-> Just (ft, la, ra)
_ -> Nothing
isLifted :: Isa.Term -> Bool
isLifted t = case t of
App (Const f _) _ _ | new f == someS -> True
_ -> False
flipOp :: Isa.Term
flipOp = conDouble "flip"
mkTermAppl fun arg = case (fun, arg) of
(App (Const uc _) b _, Tuplex [l, r] _)
| new uc == uncurryOpS
-> case (isEquallyLifted l r, b) of
(Just (_, la, ra), Const bin _) | new bin == eq ->
mkTermAppl (mkTermAppl b la) ra
_ -> mkTermAppl (mkTermAppl b l) r
(App (Const mp _) f _, Tuplex [a, b] c)
| new mp == "mapFst" -> Tuplex [mkTermAppl f a, b] c
| new mp == "mapSnd" -> Tuplex [a, mkTermAppl f b] c
(App (Const mp1 _) f _, App u@(Const mp2 _) g _)
| new mp1 == "liftSnd" && new mp2 == uncurryOpS ->
mkTermAppl u $
mkTermAppl (mkTermAppl (conDouble "liftCurSnd") f) g
| new mp1 == "liftFst" && new mp2 == uncurryOpS ->
mkTermAppl u $
mkTermAppl (mkTermAppl (conDouble "liftCurFst") f) g
(Const mp _, Tuplex [a, b] _)
| new mp == "ifImplOp" -> binImpl b a
| new mp == "exEqualOp" && (isLifted a || isLifted b) ->
mkTermAppl (mkTermAppl uncurryOp (con eqV)) arg
(Const mp _, Tuplex [Tuplex [a, b] _, c] d)
| new mp == "whenElseOp" -> case isEquallyLifted a c of
Just (f, na, nc) -> mkTermAppl f $ If b na nc d
Nothing -> If b a c d
(App (Const mp _) f c, _)
| new mp == "liftUnit2bool" -> let af = mkTermAppl f unitOp in
case arg of
Const ma _ | new ma == "True" -> af
| new ma == "False" -> false
_ -> If arg af false c
| new mp == "liftUnit2option" -> let af = mkTermAppl f unitOp in
case arg of
Const ma _ | new ma == "True" -> af
| new ma == "False" -> noneOp
_ -> If arg af noneOp c
(App (Const mp _) _ _, _)
| new mp == "liftUnit2unit" -> arg
| new mp == "lift2unit" -> mkTermAppl (conDouble "option2bool") arg
(App (App (Const cmp _) f _) g c, _)
| new cmp == compS -> mkTermAppl f $ mkTermAppl g arg
| new cmp == "curryOp" -> mkTermAppl f $ Tuplex [g, arg] c
| new cmp == "flip" -> mkTermAppl (mkTermAppl f arg) g
(App (App (Const cmp _) f _) g _, _)
| new cmp == "liftCurFst" ->
termAppl (termAppl compOp $ termAppl (termAppl flipOp f) arg)
$ termAppl flipOp g
| new cmp == "liftCurSnd" ->
mkTermAppl f $ mkTermAppl g arg
(Const d _, App (Const sm _) a _)
| new d == "defOp" && new sm == someS -> true
| new d == "option2bool" && new sm == someS -> true
| new d == "option2bool" && new sm == "bool2option"
|| new d == "bool2option" && new sm == "option2bool" -> a
| new d == "curryOp" && new sm == uncurryOpS -> a
(Const i _, _)
| new i == "bool2option" ->
let tc = mkTermAppl conSome $ unitOp
in case arg of
Const j _ | new j == "True" -> tc
| new j == "False" -> noneOp
_ -> termAppl fun arg -- If arg tc noneOp NotCont
| new i == "id" -> arg
| new i == "constTrue" -> true
| new i == "constNil" -> unitOp
(Const i _, Tuplex [] _)
| new i == "option2bool" -> false
_ -> termAppl fun arg
mkApp sg f arg = do
(fTy, fTrm) <- transTerm sg f
(aTy, aTrm) <- transTerm sg arg
case fTy of
FunType a r -> do
((rTy, fConv), (_, aConv)) <- adjustTypes a r aTy
return $ (if rTy then makePartialVal r else r,
mkTermAppl (applConv fConv fTrm)
$ applConv aConv aTrm)
PartialVal (FunType a r) -> do
((_, fConv), (_, aConv)) <- adjustTypes a r aTy
let resTy = makePartialVal r
return (resTy, mkTermAppl (mkTermAppl (mkTermAppl
(unpackOp r) $ convFun fConv) fTrm)
$ applConv aConv aTrm)
_ -> fail "not a function type"
-- * translation of lambda abstractions
getPatternType :: As.Term -> Result FunType
getPatternType t =
case t of
QualVar (VarDecl _ typ _ _) -> funType typ
TypedTerm _ _ typ _ -> funType typ
TupleTerm ts _ -> do
ptys <- mapM getPatternType ts
return $ foldl1 PairType ptys
_ -> fatal_error ("not a pattern for Isabelle: " ++ showDoc t "")
$ getRange t
transPattern sign pat = do
(ty, trm) <- transTerm sign pat
if isPartialVal ty then
fatal_error ("pattern must not be partial: " ++ showDoc pat "")
$ getRange pat
else return trm
-- form Abs(pattern term)
-> Result (FunType, Isa.Term)
abstraction sign (ty, body) pat = do
pTy <- getPatternType pat
nPat <- transPattern sign pat
return (FunType pTy ty, Abs nPat (transFunType pTy) body NotCont)