Modal2CASL.inline.hs revision a14767aeac3e78ed100f5b75e210ba563ee10dba
{- |
Module : $Header$
Copyright : (c) Klaus Luettich and Uni Bremen 2004
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The possible world encoding comorphism from ModalCASL to CASL.
We use the Relational Translation by adding one extra parameter of
type world to each predicate.
-}
module Comorphisms.Modal2CASL (Modal2CASL(..)) where
import Logic.Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Id
import Common.ProofTree
-- CASL
import CASL.Logic_CASL
import CASL.Sublogic as SL
import CASL.Sign
import CASL.AS_Basic_CASL
import CASL.Morphism
import CASL.Utils
-- ModalCASL
import Modal.Logic_Modal
import Modal.AS_Modal
import Modal.ModalSign
import Modal.Utils
-- generated function
import Modal.ModalSystems
import qualified Data.Set as Set
import qualified Data.Map as Map
import Data.Maybe
import Control.Exception (assert)
-- | The identity of the comorphism
data Modal2CASL = Modal2CASL deriving (Show)
instance Language Modal2CASL -- default definition is okay
instance Comorphism Modal2CASL
Modal ()
M_BASIC_SPEC ModalFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
MSign
ModalMor
Symbol RawSymbol ()
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree where
sourceLogic Modal2CASL = Modal
sourceSublogic Modal2CASL = ()
targetLogic Modal2CASL = CASL
mapSublogic Modal2CASL _ = Just SL.caslTop
map_theory (Modal2CASL) (sig, sens) = case transSig sig of
mme -> return (caslSign mme, relFormulas mme
++ map (mapNamed $ transSen sig) sens)
map_morphism Modal2CASL = return . mapMor
map_sentence Modal2CASL sig = return . transSen sig
map_symbol Modal2CASL = Set.singleton . mapSym
has_model_expansion Modal2CASL = True
is_weakly_amalgamable Modal2CASL = True
data ModName = SimpleM SIMPLE_ID
| SortM SORT
deriving (Show,Ord,Eq)
type ModalityRelMap = Map.Map ModName PRED_NAME
data ModMapEnv = MME { caslSign :: CASLSign,
worldSort :: SORT,
modalityRelMap :: ModalityRelMap,
relFormulas :: [Named CASLFORMULA]
}
-- (CASL signature,World sort introduced,[introduced relations on possible worlds],)
transSig :: MSign -> ModMapEnv
transSig sign =
{- trace ("Flexible Ops: " ++ show flexibleOps ++
"\nRigid Ops: " ++ show rigOps' ++
"\nOriginal Ops: " ++ show (opMap sign) ++ "\n" ++
"Flexible Preds: " ++ show flexiblePreds ++
"\nRigid Preds: " ++ show rigPreds' ++
"\nOriginal Preds: " ++ show (predMap sign) ++ "\n"
) -}
let sorSet = sortSet sign
fws = freshWorldSort sorSet
flexOps' = Map.foldWithKey (addWorld_OP fws)
Map.empty $ flexibleOps
flexPreds' = addWorldRels True relsTermMod $
addWorldRels False relsMod $
Map.foldWithKey (addWorld_PRED fws)
Map.empty $ flexiblePreds
rigOps' = rigidOps $ extendedInfo sign
rigPreds' = rigidPreds $ extendedInfo sign
flexibleOps = diffMapSet (opMap sign) rigOps'
flexiblePreds = diffMapSet (predMap sign) rigPreds'
relations = Map.union relsMod relsTermMod
genRels f mp = Map.foldWithKey (\me _ nm -> f me nm) Map.empty mp
genModFrms f mp = Map.foldWithKey f [] mp
relSymbS me = Id [mkSimpleId "g_R"] [mkId [me]] nullRange
relSymbT me = Id [mkSimpleId "g_R_t"] [me] nullRange
relsMod = genRels (\ me nm -> Map.insert (SimpleM me) (relSymbS me) nm)
(modies $ extendedInfo sign)
relsTermMod = genRels (\ me nm ->
Map.insert (SortM me) (relSymbT me) nm)
(termModies $ extendedInfo sign)
relModFrms = genModFrms (\ me frms trFrms -> trFrms ++
transSchemaMFormulas partMME
fws (relSymbS me) frms)
(modies $ extendedInfo sign)
relTermModFrms = genModFrms (\ me frms trFrms -> trFrms ++
transSchemaMFormulas partMME
fws (relSymbT me) frms)
(termModies $ extendedInfo sign)
addWorldRels isTermMod rels mp =
let argSorts rs = if isTermMod
then [getModTermSort rs,fws,fws]
else [fws,fws] in
Map.fold (\rs nm -> Map.insert rs
PredType $ argSorts rs)
nm)
mp rels
partMME = MME {caslSign =
(emptySign ())
{sortSet = Set.insert fws sorSet
, sortRel = sortRel sign
, opMap = Map.unionWith Set.union flexOps' rigOps'
, assocOps = diffMapSet (assocOps sign) flexibleOps
, predMap = Map.unionWith Set.union flexPreds' rigPreds'},
worldSort = fws,
modalityRelMap = relations,
flexOps = flexibleOps,
-- rigOps = rigOps',
flexPreds = flexiblePreds,
-- rigPreds = rigPreds',
relFormulas = []}
in partMME { relFormulas = relModFrms++relTermModFrms}
, modies :: Set.Set SIMPLE_ID
, termModies :: Set.Set Id --SORT
}
-}
mapMor :: ModalMor -> CASLMor
mapMor m = (embedMorphism ()
(caslSign $ transSig $ msource m)
$ caslSign $ transSig $ mtarget m)
{ sort_map = sort_map m
, fun_map = fun_map m
, pred_map = pred_map m }
mapSym :: Symbol -> Symbol
mapSym = id -- needs to be changed once modal symbols are added
transSchemaMFormulas :: ModMapEnv -> SORT -> PRED_NAME
-> [AnModFORM] -> [Named CASLFORMULA]
transSchemaMFormulas mapEnv fws relSymb =
mapMaybe (transSchemaMFormula (mapTERM mapEnv) fws relSymb worldVars)
transSen :: MSign -> ModalFORMULA -> CASLFORMULA
transSen msig = mapSenTop (transSig msig)
mapSenTop :: ModMapEnv -> ModalFORMULA -> CASLFORMULA
mapSenTop mapEnv@(MME{worldSort = fws}) f =
case f of
Quantification q@(Universal) vs frm ps ->
Quantification q (qwv:vs) (mapSen mapEnv wvs frm) ps
f1 -> Quantification Universal [qwv] (mapSen mapEnv wvs f1) nullRange
where qwv = Var_decl wvs fws nullRange
wvs = [head worldVars]
-- head [VAR] is always the current world variable (for predication)
mapSen :: ModMapEnv -> [VAR] -> ModalFORMULA -> CASLFORMULA
mapSen mapEnv@(MME{worldSort = fws,flexPreds=fPreds}) vars
f = case f of
Quantification q vs frm ps ->
Quantification q vs (mapSen mapEnv vars frm) ps
Conjunction fs ps ->
Conjunction (map (mapSen mapEnv vars) fs) ps
Disjunction fs ps ->
Disjunction (map (mapSen mapEnv vars) fs) ps
Implication f1 f2 b ps ->
Implication (mapSen mapEnv vars f1) (mapSen mapEnv vars f2) b ps
Equivalence f1 f2 ps ->
Equivalence (mapSen mapEnv vars f1) (mapSen mapEnv vars f2) ps
Negation frm ps -> Negation (mapSen mapEnv vars frm) ps
True_atom ps -> True_atom ps
False_atom ps -> False_atom ps
Existl_equation t1 t2 ps ->
Existl_equation (mapTERM mapEnv vars t1) (mapTERM mapEnv vars t2) ps
Strong_equation t1 t2 ps ->
Strong_equation (mapTERM mapEnv vars t1) (mapTERM mapEnv vars t2) ps
Predication pn as qs ->
let as' = map (mapTERM mapEnv vars) as
fwsTerm = sortedWorldTerm fws (head vars)
(pn',as'') =
case pn of
Pred_name _ -> error "Modal2CASL: untyped predication"
Qual_pred_name prn pType@(Pred_type sorts pps) ps ->
let addTup = (Qual_pred_name (addPlace prn)
(Pred_type (fws:sorts) pps) ps,
fwsTerm:as')
defTup = (pn,as') in
maybe defTup
(\ ts -> assert (not $ Set.null ts)
(if Set.member (toPredType pType) ts
then addTup
else defTup))
(Map.lookup prn fPreds)
in Predication pn' as'' qs
Definedness t ps -> Definedness (mapTERM mapEnv vars t) ps
Membership t ty ps -> Membership (mapTERM mapEnv vars t) ty ps
Sort_gen_ax constrs isFree -> Sort_gen_ax constrs isFree
ExtFORMULA mf -> mapMSen mapEnv vars mf
_ -> error "Modal2CASL.transSen->mapSen"
mapMSen :: ModMapEnv -> [VAR] -> M_FORMULA -> CASLFORMULA
mapMSen mapEnv@(MME{worldSort=fws,modalityRelMap=pwRelMap}) vars f
= let trans_f1 = mkId [mkSimpleId "Placeholder for Formula"]
t_var = mkSimpleId "Placeholder for Modality Term"
(w1,w2,newVars) = assert (not (null vars))
(let nVars =
freshWorldVar (vars) : vars
in (head vars, head nVars, nVars))
getRel mo map' =
(error ("Modal2CASL: Undefined modality " ++ show mo))
(modalityToModName mo)
map'
trans' mTerm propSymb trForm nvs f1 =
replacePropPredication mTerm
propSymb (mapSen mapEnv nvs f1) trForm
mapT = mapTERM mapEnv newVars
in
case f of
BoxOrDiamond True moda f1 _ ->
let rel = getRel moda pwRelMap in
case moda of
Simple_mod _ ->
case map sentence
$ concat [inlineAxioms CASL
" sort fws \n\
\ pred rel : fws * fws; \n\
\ trans_f1 : () \n\
\ vars w1 : fws \n\
\ . forall w2 : fws . rel(w1,w2) => \n\
\ trans_f1"] of
[newFormula] -> trans' Nothing
trans_f1 newFormula newVars f1
_ -> error "Modal2CASL: mapMSen: impossible error"
Term_mod t ->
let tt = getModTermSort rel in
case map sentence
$ concat [inlineAxioms CASL
" sort fws,tt \n\
\ pred rel : tt * fws * fws; \n\
\ trans_f1 : () \n\
\ vars w1 : fws; t_var : tt \n\
\ . forall w2 : fws . rel(t_var,w1,w2) => \n\
\ trans_f1"] of
[newFormula] -> trans' (Just (rel,t_var,mapT t))
trans_f1 newFormula
newVars f1
_ -> error "Modal2CASL: mapMSen: impossible error"
BoxOrDiamond False moda f1 _ ->
let rel = getRel moda pwRelMap in
case moda of
Simple_mod _ ->
case map sentence
$ concat [inlineAxioms CASL
" sort fws \n\
\ pred rel : fws * fws; \n\
\ trans_f1 : () \n\
\ vars w1 : fws \n\
\ . exists w2 : fws . rel(w1,w2) /\\ \n\
\ trans_f1"] of
[newFormula] -> trans' Nothing
trans_f1 newFormula newVars f1
_ -> error "Modal2CASL: mapMSen: impossible error"
Term_mod t ->
let tt = getModTermSort rel in
case map sentence
$ concat [inlineAxioms CASL
" sort fws,tt \n\
\ pred rel : tt * fws * fws; \n\
\ trans_f1 : () \n\
\ vars w1 : fws; t_var:tt \n\
\ . exists w2 : fws . rel(t_var,w1,w2) /\\ \n\
\ trans_f1"] of
[newFormula] -> trans' (Just (rel,t_var,mapT t))
trans_f1 newFormula newVars f1
_ -> error "Modal2CASL: mapMSen: impossible error"
-- head [VAR] is always the current world variable (for Application)
mapTERM :: ModMapEnv -> [VAR] -> TERM M_FORMULA -> TERM ()
mapTERM mapEnv@(MME{worldSort=fws,flexOps=fOps}) vars t = case t of
Qual_var v ty ps -> Qual_var v ty ps
Application opsym as qs ->
let as' = map (mapTERM mapEnv vars) as
fwsTerm = sortedWorldTerm fws (head vars)
addFws (Op_type k sorts res pps) =
Op_type k (fws:sorts) res pps
(opsym',as'') =
case opsym of
Op_name _ -> error "Modal2CASL: untyped prdication"
Qual_op_name on opType ps ->
let addTup = (Qual_op_name (addPlace on)
(addFws opType) ps,
fwsTerm:as')
defTup = (opsym,as') in
maybe defTup
(\ ts -> assert (not $ Set.null ts)
(if Set.member (toOpType opType) ts
then addTup
else defTup))
(Map.lookup on fOps)
in Application opsym' as'' qs
Sorted_term trm ty ps -> Sorted_term (mapTERM mapEnv vars trm) ty ps
Cast trm ty ps -> Cast (mapTERM mapEnv vars trm) ty ps
Conditional t1 f t2 ps ->
Conditional (mapTERM mapEnv vars t1)
(mapSen mapEnv vars f)
(mapTERM mapEnv vars t2) ps
_ -> error "Modal2CASL.mapTERM"
addPlace :: Id -> Id
addPlace i@(Id ts ids ps)
| isMixfix i = Id ((\ (x,y) -> x++mkSimpleId place:y)
(span (not . isPlace) ts)) ids ps
| otherwise = i
modalityToModName :: MODALITY -> ModName
modalityToModName (Simple_mod sid) = SimpleM sid
modalityToModName (Term_mod t) =
case t of
Sorted_term _ srt _ -> SortM srt
_ -> error ("Modal2CASL: modalityToModName: Wrong term: " ++ show t)
sortedWorldTerm :: SORT -> VAR -> TERM ()
sortedWorldTerm fws v = Sorted_term (Qual_var v fws nullRange) fws nullRange
addWorld_OP :: SORT -> OP_NAME -> Set.Set OpType
addWorld_OP = addWorld_ (\ws t -> t { opArgs = ws : opArgs t})
addWorld_PRED :: SORT -> PRED_NAME -> Set.Set PredType
addWorld_PRED = addWorld_ (\ws t -> t {predArgs = ws : predArgs t})
addWorld_ :: (Ord a) => (SORT -> a -> a)
-> SORT -> Id -> Set.Set a
addWorld_ f fws k set mp = Map.insert (addPlace k) (Set.map (f fws) set) mp
{-
-- List of sort ids for possible Worlds
worldSorts :: [SORT]
worldSorts = map mkSORT ("World":map (\x -> "World" ++ show x) [(1::Int)..])
where mkSORT s = mkId [mkSimpleId s]
-}
freshWorldSort :: Set.Set SORT -> SORT
freshWorldSort _sorSet = mkId [mkSimpleId "g_World"]
-- head . filter notKnown worldSorts
-- where notKnown s = not $ s `Set.member` sorSet
-- List of variables for worlds
worldVars :: [SIMPLE_ID]
worldVars = map mkSimpleId $ map (\ x -> "g_w" ++ show x) [(1::Int)..]
freshWorldVar :: [SIMPLE_ID] -> SIMPLE_ID
freshWorldVar vs = head . (filter notKnown) $ worldVars
where notKnown v = not $ elem v vs
{-
-- construct a relation from a given modality symbol which is new
consRelation :: Pred_map -- ^ map of allready known predicate symbols
->
-}