Hybrid2CASL.hs revision 7a7d13f347477e6daa89b9322aed2985dd7f9c56
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Copyright : nevrenato@gmail.com
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : non-portable (imports Logic.Logic)
Comorphism HybridCASL to CASL.
-}
module Comorphisms.Hybrid2CASL
( Hybrid2CASL (..)
) where
import Logic.Logic
import Logic.Comorphism
import Common.ProofTree
import Common.AS_Annotation
import Common.Result
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.MapSet as MapSet
import Common.Id
import qualified Data.Set as Set
import qualified Data.Map as Map
import Hybrid.Logic_Hybrid
import Hybrid.AS_Hybrid
import Hybrid.HybridSign
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Morphism
import CASL.Sign
import CASL.Sublogic as SL
data Hybrid2CASL = Hybrid2CASL deriving Show
-- Just to make things easier to understand
type HForm = HybridFORMULA
type CForm = CASLFORMULA
type CSign = CASLSign
instance Language Hybrid2CASL where
language_name Hybrid2CASL = "Hybrid2CASL"
instance Comorphism Hybrid2CASL
Hybrid ()
H_BASIC_SPEC HForm SYMB_ITEMS SYMB_MAP_ITEMS
HSign
HybridMor
Symbol RawSymbol ()
CASL
CASL_Sublogics
CASLBasicSpec CForm SYMB_ITEMS SYMB_MAP_ITEMS
CSign
CASLMor
Symbol RawSymbol ProofTree where
sourceLogic Hybrid2CASL = Hybrid
sourceSublogic Hybrid2CASL = ()
targetLogic Hybrid2CASL = CASL
mapSublogic Hybrid2CASL _ = Just SL.caslTop
{ SL.cons_features = SL.emptyMapConsFeature
, SL.sub_features = SL.NoSub
}
map_theory Hybrid2CASL = transTheory
has_model_expansion Hybrid2CASL = True
is_weakly_amalgamable Hybrid2CASL = True
is_model_transportable Hybrid2CASL = True
isInclusionComorphism Hybrid2CASL = True
{- Translates the given theory in an HybridCASL form to an equivalent
theory in CASL form
Question : Why some sentences are in the sig and other sentences are
in the 2nd argument ? (this is scary)
fs'' is needed for special sentences, refering about datatypes
for which hybridization has nothing to do -}
transTheory :: (HSign, [Named HForm]) -> Result (CSign, [Named CForm])
transTheory (s, fs) = let
newSig = transSig s
fs' = fmap (mapNamed trans) fs
fs'' = dataTrans (fs ++ sentences s)
newSens = fs' ++ sentences newSig ++ fs''
rigidP = applRig (rigidPreds $ extendedInfo s) "RigidPred" gnPCons
rigidO = applRig (rigidOps $ extendedInfo s) "RigidOp" gnOCons
in return (newSig, rigidP ++ rigidO ++ newSens)
-- Special formulas not covered by normal hybridization
dataTrans :: [Named HForm] -> [Named CForm]
dataTrans = foldr f []
where
f a b = case sentence a of
Sort_gen_ax a' b' -> a { sentence = Sort_gen_ax a' b' } : b
_ -> b
transSig :: HSign -> CSign
transSig hs = let
workflow = transSens hs . addWrldArg hs
workflow' = addRels hs . addWorlds hs
in workflow . workflow' $ newSign hs
{- Creates a new CASL signature based on the hybrid Sig
Also adds the world sort. -}
newSign :: HSign -> CSign
newSign hs = (emptySign ())
{ sortRel = Rel.insertKey worldSort $ sortRel hs
, emptySortSet = emptySortSet hs
, assocOps = assocOps hs
, varMap = varMap hs
, declaredSymbols = declaredSymbols hs
, envDiags = envDiags hs
, annoMap = annoMap hs
, globAnnos = globAnnos hs
, opMap = addOpMapSet (rigidOps $ extendedInfo hs) (opMap hs)
, predMap = addMapSet (rigidPreds $ extendedInfo hs) (predMap hs)
}
{- | Adds the World constants, based
on the nominals in HSign -}
addWorlds :: HSign -> CSign -> CSign
addWorlds hs cs =
let getWorld = OpType Total [] worldSort
s = extendedInfo hs
kl = Map.keys $ nomies s
workflow = stringToId . ("Wrl_" ++) . tokStr
il = fmap workflow kl
ins = foldr (\ k m -> MapSet.insert k getWorld m) (opMap cs) il
in cs { opMap = ins }
{- | Adds the Accessibility relation, based
ono the modalities found in HSign -}
addRels :: HSign -> CSign -> CSign
addRels hs cs =
let accRelT = PredType [worldSort, worldSort]
s = extendedInfo hs
kl = Map.keys $ modies s
il = fmap (stringToId . ("Acc_" ++) . tokStr) kl
ins = foldl (\ m k -> MapSet.insert k accRelT m) (predMap cs) il
in cs { predMap = ins }
{- | Adds one argument of type World to all preds and ops
definitions in an hybrid signature and passes them to a caslsig -}
addWrldArg :: HSign -> CSign -> CSign
addWrldArg hs cs = let
f (OpType a b c) = OpType a (worldSort : b) c
g (PredType a) = PredType (worldSort : a)
ops = addOpMapSet (rigidOps $ extendedInfo hs) (opMap hs)
preds = addMapSet (rigidPreds $ extendedInfo hs) (predMap hs)
ks = Set.elems $ MapSet.keysSet ops
ks' = Set.elems $ MapSet.keysSet preds
in cs
{ opMap = foldr (MapSet.update (Set.map f)) (opMap cs) ks
, predMap = foldr (MapSet.update (Set.map g)) (predMap cs) ks'
}
{- Translates all hybridformulas in a hybridSig to caslformulas
Ones are in the declaration of nominals and modalities (however
for nows that is forbidden to happen)
The others come from the casl sig -}
transSens :: HSign -> CSign -> CSign
transSens hs cs = let
mods = Map.elems (modies $ extendedInfo hs)
noms = Map.elems (nomies $ extendedInfo hs)
fs = concat $ mods ++ noms
workflow = makeNamed "" . trans . item
fs' = fmap workflow fs
fs'' = fmap (mapNamed trans) (sentences hs)
in cs { sentences = fs' ++ fs'' }
-- Translates an HybridCASL formula to CASL formula
trans :: HForm -> CForm
trans = let w = mkSimpleId "world"
vars = mkVarDecl w worldSort
in mkForall [vars] . trForm (QtM w) []
{- | Formula translator
The 2nd argument is used to store the reserved words -}
trForm :: Mode -> [String] -> HForm -> CForm
trForm w s b = case b of
ExtFORMULA f -> alpha w s f
Junction j fs r -> Junction j (fmap (trForm w s) fs) r
Relation f r f' q -> Relation (trForm w s f) r (trForm w s f') q
Negation f _ -> mkNeg $ trForm w s f
Predication p l _ -> mkPredication (mkPName p) $ trTerms w s l
Quantification q l f r -> Quantification q l (trForm w s f) r
Definedness t _ -> Definedness (trTerm w s t) nullRange
Atom a r -> Atom a r
_ -> error "Hybrid2CASL.trForm"
-- | Alpha function, translates pure Hybrid Formulas
alpha :: Mode -> [String] -> H_FORMULA -> CForm
alpha w s b = case b of
Here n _ -> mkStEq (mkArg (Right n) s) $ case w of
QtM wm -> mkVarTerm wm worldSort
_ -> mkArg (Left w) s
BoxOrDiamond True m f _ -> trBox w m s f
BoxOrDiamond False m f _ -> trForm w s $ toBox m f
At (Simple_nom n) f _ -> trForm (AtM n) s f
Univ n f _ -> trForall w n s f
Exist n f _ -> mkNeg $ trForall w n s (mkNeg f)
where
toBox m f = mkNeg . ExtFORMULA $ BoxOrDiamond True m (mkNeg f) nullRange
-- | Function that takes care of formulas of box type
trBox :: Mode -> MODALITY -> [String] -> HForm -> CForm
trBox m (Simple_mod m') s f = quant $ mkImpl prd $ trForm (QtM v) ss f
where
quant = mkForall [var]
var = mkVarDecl v worldSort
v = mkSimpleId $ head ss
ss = newVarName s
prd = mkPredication predN $ predA m
predN = qp m' t
predA w = [mkArg (Left w) s, mkArg (Left (QtM v)) s]
qp x = mkQualPred (stringToId . ("Acc_" ++) $ show x)
t = Pred_type [worldSort, worldSort] nullRange
trBox _ _ _ _ = trueForm
-- translation function for the quantification of nominals case
trForall :: Mode -> NOMINAL -> [String] -> HForm -> CForm
trForall w (Simple_nom a) s f = mkForall [mkVarDecl a worldSort]
$ trForm w (show a : s) f
-- Function that translates a list of hybrid terms to casl terms
trTerms :: Mode -> [String] -> [TERM H_FORMULA] -> [TERM ()]
trTerms m s l = mkArg (Left m) s : fmap (trTerm m s) l
-- Function that translates hybrid term to casl term
trTerm :: Mode -> [String] -> TERM H_FORMULA -> TERM ()
trTerm m s t = case t of
Qual_var v s' x -> Qual_var v s' x
Application o l r -> Application (mkOName o) (trTerms m s l) r
Sorted_term t' s' r -> Sorted_term (trTerm m s t') s' r
_ -> error "Hybrid2CASL.trTerm"
-- **** Auxiliar functions and datatype ****
-- The world sort type
worldSort :: SORT
worldSort = stringToId "World"
mkPName :: PRED_SYMB -> PRED_SYMB
mkPName ~(Qual_pred_name n t _) = mkQualPred n (f t)
where f (Pred_type l r) = Pred_type (worldSort : l) r
mkOName :: OP_SYMB -> OP_SYMB
mkOName ~(Qual_op_name n t _) = mkQualOp n (f t)
where f (Op_type o l s r) = Op_type o (worldSort : l) s r
{- Function that will decide how to create a new argument
That argument can be a variable or a nominal (constant) -}
mkArg :: Either Mode NOMINAL -> [String] -> TERM ()
mkArg a l = case a of
Left (QtM w) -> vt w
Left (AtM w) -> ch tokStr w
Right (Simple_nom n) -> ch show n
where
vt x = mkVarTerm x worldSort
ap x = mkAppl (qo x t) []
ch f x = if f x `elem` l then vt x else ap x
qo x = mkQualOp $ stringToId . ("Wrl_" ++) $ show x
t = Op_type Total [] worldSort nullRange
-- Create a new variable name new in the formula
newVarName :: [String] -> [String]
newVarName xs = ("world" ++) (show $ length xs) : xs
{- | Auxiliar datatype to determine wich is the argument of alpha
Quantified Mode or At mode -}
data Mode = QtM VAR | AtM SIMPLE_ID
-- **** End of auxiliar functions and datatypes section ****************
-- ----- Generation of constraints associated with rigid designators
toName :: (Functor f) => String -> f a -> f (Named a)
toName s = fmap $ makeNamed s
{- Adds the constraints associated with the rigidity
of predicates or operations. -}
applRig :: (Ord k) => MapSet.MapSet k a ->
String ->
(k -> a -> CForm) ->
[Named CForm]
applRig m s f = toName s $ glueDs ks f m
where ks = Set.elems $ MapSet.keysSet m
{- Given a list of designators, generates the rigidity constraints
associated, and concats them into a single list -}
glueDs :: (Ord k) => [k] ->
(k -> a -> CForm) ->
MapSet.MapSet k a ->
[CForm]
glueDs ks f m = concat $ foldr (\ a b -> g a : b) [] ks
where g k = glueDe k (MapSet.lookup k m) f
{- Given a single designator, genereates the rigidity constraints
associated, and joins them into a single list -}
glueDe :: k -> Set.Set a -> (k -> a -> CForm) -> [CForm]
glueDe n s f = foldr (\ a b -> f n a : b) [] $ Set.elems s
{- Generates a rigid constraint from a single pred name and type
We add the extra world argument in mkPredType so that it coincides
with the later translated predicate definition -}
gnPCons :: PRED_NAME -> PredType -> CForm
gnPCons n (PredType ts) = mkForall decls $ mkForall wA $ mkImpl f1 f2
where f1 = mkPredication predName $ terms w1
f2 = mkPredication predName $ terms w2
decls = fromSort ts
terms x = fromDecls $ x : decls
predName = mkQualPred n $ mkPredType ts
mkPredType x = Pred_type (worldSort : x) nullRange
gnOCons :: OP_NAME -> OpType -> CForm
gnOCons n (OpType o ts t) = mkForall decls $ mkForall wA f
where f = mkStEq (mkAppl opName $ terms w1) t2
t2 = mkAppl opName $ terms w2
decls = fromSort ts
terms x = fromDecls $ x : decls
opName = mkQualOp n $ mkOpType o (worldSort : ts) t
mkOpType x y z = Op_type x y z nullRange
{- The next functions are auxiliar. They are need for generating the
proper variables/terms for the quantifiers,predications and operations. -}
w1 :: VAR_DECL
w1 = mkVarDecl (mkSimpleId "w") worldSort
w2 :: VAR_DECL
w2 = mkVarDecl (mkSimpleId "w'") worldSort
{- mkVarDecl doesn't support arrays as arg
mkForall doesn't support single elements as arg -}
wA :: [VAR_DECL]
wA = [Var_decl [mkSimpleId "w", mkSimpleId "w'"] worldSort nullRange]
-- Auxiliar function 1
fromSort :: [SORT] -> [VAR_DECL]
fromSort = snd . foldr f (0 :: Int, [])
where
f so (i, xs) = (i + 1, mkVarDecl (str i) so : xs)
str i = mkSimpleId $ 'x' : show i
-- Auxiliar function 2
fromDecls :: [VAR_DECL] -> [TERM f]
fromDecls = concatMap fromDecl
-- Auxiliar function 3
fromDecl :: VAR_DECL -> [TERM f]
fromDecl (Var_decl vs s _ ) = map (`mkVarTerm` s) vs