Hs2HOLCFaux.hs revision da955132262baab309a50fdffe228c9efe68251d
{- |
Module : $Header: /repository/HetCATS/Comorphisms/Hs2HOLCFaux.hs,v 1.26 2007/05/28 09:05:49 paolot Exp $
Copyright : (c) Paolo Torrini and Till Mossakowski and Uni Bremen 2004-2005
License : Asimilar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : paolot@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (depends on programatica using MPTC)
auxiliary functions for the embedding comorphism from Haskell to Isabelle
-}
module Comorphisms.Hs2HOLCFaux
( PrDecl
, aweLits
, mthEq
, removeEL
, extAxType
, extTBody
, fixMRec
, newConstTab
, getTermName
, extRightH
, ExpRole(..)
, ISign
, IsaSort
, IsaType
, IsaPattern
, IsaTerm
, IsaName(..)
, xDummy
, termMAbs
, termMAppl
, termBAppl
, PrExp
, PrPat
, renVars
, remove_duplicates
, HsType
, HsScheme
, HsId
, listEnum
, getInstClass
, getInstType
, repVarClass
, constrVarClass
, getLitName
, transTN
, transPath
, showIsaS
, funFliftbin
, funFlift2
, VaMap
, AConstTab
, liftMapByListD
, nothingFiOut
, IsaTypeInsts
, IsaVT(..)
, TyMap
, liftMapByList
, HsTypeInfo
, HsInstance
, HsInstances
, extClassInfo
, extAbbrsInfo
, groupInst
, getMainInstType
, prepInst
, checkTyCons
, getDepDoms
, getDomType
, getFieldTypes
, isCont
, replaceTyVar
, varDouble
) where
import Data.List
import qualified Data.Map as Map
import Common.AS_Annotation
-- Haskell (Programatica)
import SourceNames
import TiTypes
import TiKinds
import TiInstanceDB -- as TiInst
import PNT
import PosName
import UniqueNames
import SyntaxRec
import TiPropDecorate
import PropSyntaxStruct as HsName
import TiDecorate
-- Isabelle
import Isabelle.IsaSign as IsaSign
import Isabelle.IsaConsts as IsaConsts
import Isabelle.Translate as Translate
import Debug.Trace
------------------------------- TYPE synonyms ------------------------------
------------------ Haskell -------------------------------------------------
type HsInstance = TiInstanceDB.Instance PNT
type HsInstances = [TiInstanceDB.Instance PNT]
type HsPred = TiTypes.Pred PNT
type HsType = TiTypes.Type PNT -- same as HsPred
type HsClass = TiTypes.Type PNT
type HsScheme = TiTypes.Scheme PNT
type HsId = HsIdentI PNT
type HsTypeInfo = TiTypes.TypeInfo PNT
type PrDecl = TiPropDecorate.TiDecl PNT
type PrExp = TiPropDecorate.TiExp PNT
type PrPat = TiDecorate.TiPat PNT
type HId i = HsIdentI i
type VaMap = Map.Map HsId HsScheme
type TyMap = Map.Map HsId (Kind, HsTypeInfo)
------------------ Isabelle ------------------------------------------------
type ISign = IsaSign.Sign
type IsaSort = IsaSign.Sort
type IsaType = IsaSign.Typ
type IsaTerm = IsaSign.Term
type IsaPattern = IsaSign.Term
type IsaTypeInsts = (TName, [(IsaClass, [(IsaType, [IsaClass])])])
-------------------------- list functions ----------------------------------
removeEL :: [[a]] -> [[a]]
removeEL = filter (not . null)
remove_duplicates :: Eq a => [a] -> [a]
remove_duplicates = nub . reverse
listEnum :: [a] -> [(a, Int)]
listEnum l = zip l [1..]
------------------------------- filters -----------------------------------
nothingFiOut :: [(a, (Maybe b, c))] -> [(a, (b, c))]
nothingFiOut ls = [(x, (y, w)) | (x, (Just y, w)) <- ls]
------------------------------ lifting function ---------------------------
liftMapByList :: (x -> [(a, b)]) -> ([(c, d)] -> y)
-> (a -> c) -> (b -> d) -> x -> y
liftMapByList ma mb h k f = mb [(h a, k b) | (a, b) <- ma f]
liftMapByListD :: (x -> [a]) -> ([c] -> y) -> (a -> b1)
-> (a -> b2) -> ([(b1, b2)] -> [c]) -> x -> y
liftMapByListD l1 l2 h k g f = l2 $ g [ (h a, k a) | a <- l1 f]
------------------------ generic checking of mutual dependencies ----------
abGetDep :: Eq a => (a -> a -> Bool) -> [[a]] -> [[a]]
abGetDep f ls = case ls of
x:xs ->
remove_duplicates $
removeEL (map remove_duplicates (checkDep (abCheckDep (mutRel f))
(xs) [x] []))
[] -> []
{- called to check whether, given two lists of elements, one depends
on the other. -}
abCheckDep :: (a -> a -> Bool) -> [a] -> [a] -> Bool
abCheckDep f as bs = any (\x -> any (f x) bs) as
checkDep :: ([x] -> [x] -> Bool) -> [[x]] -> [[x]] -> [[x]] -> [[x]]
checkDep f ls ms cs = case ls of
a:as -> case ms of
b:bs ->
if (f a b) then checkDep f ((a ++ b):as) bs cs else
checkDep f (a:as) bs (b:cs)
[] -> checkDep f as (a:cs) []
[] -> ms
-- mutual dependence
mutRel :: (a -> a -> Bool) -> a -> a -> Bool
mutRel f x y = f x y && f y x
depOn :: (a -> b -> Bool) -> (c -> a) -> (c -> [b]) -> c -> c -> Bool
depOn f g h x y = any (f (g x)) (h y)
-------------------- HASKELL representation -------------------------------
----------------------- check functions -----------------------------------
checkTyCons :: HsId -> Bool
checkTyCons d = case d of
HsCon _ -> True
_ -> False
---------------------------- get functions -------------------------------
----- ------------- getting info from Haskell types ----------------------
getLitName :: HsType -> PNT
getLitName (Typ t) = case t of
HsTyVar x -> x
HsTyCon x -> x
_ -> error "Hs2HOLCFaux.getLitName"
------------------ getting class and type ouf of predicate --------------
getInstType :: HsPred -> HsType
getInstType x = case x of (Typ (HsTyApp _ t)) -> t
_ -> trace ("\n TYPE: " ++ show x) $
error "Hs2HOLCFaux.getInstType"
getInstClass :: HsPred -> HsType
getInstClass x = case x of (Typ (HsTyApp c _)) -> c
_ -> trace ("\n CLASS: " ++ show x) $
error "Hs2HOLCFaux.getInstClass"
----------------------- getting class information -----------------------
extClassInfo :: HsTypeInfo -> [HsClass]
extClassInfo p = case p of
TiTypes.Class a _ _ _ -> map getInstClass a
_ -> error "Hs2HOLCFaux.extClassInfo"
--------------------------- getting info on type syns -------------------
extAbbrsInfo :: HsTypeInfo -> ([PNT], HsType)
extAbbrsInfo p = case p of
TiTypes.Synonym ls t -> (ls, t)
_ -> error "Hs2HOLCFaux.extAbbrsInfo"
----------- get arity information from Haskell instances ------------
getInstPrems :: HsInstance -> [HsPred]
getInstPrems (_, IE _ _ ps) = ps
getMainInstType :: HsInstance -> HsType
getMainInstType (i, _) = getInstType i
getMainInstClass :: HsInstance -> HsClass
getMainInstClass (i, _) = getInstClass i
prepInst :: HsInstance -> (HsClass, [(HsType, [HsClass])])
prepInst i = (getMainInstClass i, prepInst1 i)
prepInst1 :: HsInstance -> [(HsType, [HsClass])]
prepInst1 i =
[(x, [getInstClass y | y <-
getInstPrems i, showIsaHsTypeString (getInstType y)
== showIsaHsTypeString x])
| x <- remove_duplicates $ map getInstType (getInstPrems i)]
----------------------- ISABELLE representation ---------------------------
data ExpRole = FunDef | InstDef -- no PLogic yet
deriving (Ord,Eq,Show)
----------------------------- constants -----------------------------------
xDummy :: IsaTerm
xDummy = conDouble "dummy"
holEq :: IsaTerm -> IsaTerm -> IsaTerm
holEq t1 t2 = termMAppl NotCont (con eqV) [t1, t2]
getTermName :: Term -> Maybe String
getTermName a = case a of
Const x _ -> Just $ new x
Free x -> Just $ new x
_ -> Nothing -- "_"
------------------------ Haskell names --------------------------------
-- method names
mthEq,mthOrd,mthEnum,mthBounded,mthNum,mthIntegral :: [String]
mthMonad,mthFunctor,mthAll,aweLits,mthFractional :: [String]
mthEq = ["==", "/="]
mthOrd = ["compare", "<", "<=", ">", ">=", "max", "min"]
mthEnum = ["succ", "pred", "toEnum", "fromEnum", "enumFrom",
"enumFromThen", "enumFromTo", "enumFromThenTo"]
mthBounded = ["minBound", "maxBound"]
mthNum = ["+", "-", "*", "negate", "abs", "signum", "fromInteger"]
mthIntegral = ["quot", "rem", "div", "mod", "quotRem", "divMod", "toInteger"]
mthMonad = ["return", ">>=", ">>", "fail"]
mthFunctor = ["fmap"]
mthFractional = ["/","recip","fromRational"]
mthAll = mthEq ++ mthOrd ++ mthEnum ++ mthNum
++ mthIntegral ++ mthMonad ++ mthFunctor ++ mthBounded
-- why not mthFractional, too??
aweLits = mthMonad ++ mthFunctor
nameListA, nameListB, nameListC, nameListD :: [String]
nameListE, nameListF, nameListH :: [String]
-- Special translation - operators
nameListA = ["&&", "||", "==", "/=", "<", "<=", ">", ">=", "+",
"*", "-", "^",
"^^", "++", "!!", "/", ".", "$", "$!", ">>=", ">>"]
-- dual translation - constructors
nameListB = ["()","(,)","True","False",":","[]","Just","Nothing"]
-- dual translation operators
nameListC = ["primError","return"]
-- other constructors
nameListD = ["ET","EQ","GT","Left","Right"]
-- Prelude functions
nameListE = -- map (\x -> x ++ "'")
["not","min","max","negate","abs","signum",
"fromInteger","succ","pred","fromEnum","toEnum","enumFrom",
"enumFromThen","enumFromTo","enumFromThenTo",
"minBound","maxBound","toRational","quot","rem","div","mod",
"quotRem","divMod","toInteger","otherwise","either", "maybe",
"fst","snd","id","curry","uncurry","const","until","asTypeOf",
"odd","even","subtract","flip","gcd","lcm","seq","error",
"undefined","fromRational","recip","powAux","powBux"]
-- Prelude list functions
nameListF = -- map (\x -> x ++ "'")
["map","filter","concat","concatMap","head","last","tail",
"init","null","length","foldl","foldl1","scanl","scanl1",
"foldr","foldr1","scanr","scanr1","iterate","repeat",
"replicate","cycle","take","drop","splitAt","takeWhile",
"dropWhile","span","break","lines","words","unlines",
"unwords","reverse","and","or","any","all","elem","notElem",
"lookup","sum","product","maximum","minimum","zip","zip3",
"zipWith","zipWith3","unzip","unzip3"]
-- hidden
nameListH = ["flip","&&","||",conj,disj]
primedS :: String -> String
primedS s = s ++ "'"
trOSym :: String -> String
trOSym s = case s of
"&&" -> "conj"
"||" -> "disj"
"==" -> "eq"
"/=" -> "neq"
"<" -> "less"
"<=" -> "leq"
">" -> "more"
">=" -> "meq"
"+" -> "add"
"*" -> "prod"
"-" -> "diff"
"^" -> "pow"
"^^" -> "fpow"
"++" -> "bconcat"
"!!" -> "nth"
"/" -> "frac"
"." -> "comp"
"$" -> "apply"
"$!" -> "sapply"
">>=" -> "mbind"
">>" -> "mseq"
_ -> error "Hs2HOLCFaux,trOSym"
transPrelude :: (String -> String) -> String -> String
transPrelude f s =
if elem s (nameListB ++ nameListC ++ nameListD) then s
else if elem s (nameListE ++ nameListF) then (s++"H")
else if elem s nameListA then (trOSym s ++ "H")
else if take 9 s == "default__"
then transPrelude f (drop 9 s) ++ "I"
else if take 3 s == "$--"
then transPrelude f (drop 3 s) ++ "I"
else let ns = init s
in if elem ns nameListA && last s == '#'
then (trOSym ns ++
(if elem ns (mthAll ++ nameListH)
then "H" else "U"))
else if elem s (map primedS (nameListE ++ nameListF))
then (ns ++ (if elem ns (mthAll ++ nameListH)
then "H" else "U"))
else f s
---------------------------- Name translation ----------------------------
-- Translating to strings compatible with Isabelle
class IsaName a where
showIsaName :: a -> String
showIsaString :: a -> String
showIsaS :: String -> String
showIsaS s = case s of
_ -> transPrelude (transConstStringT HOLCF_thy) s
instance IsaName String where
showIsaName x = showIsaS x
showIsaString x = x
showIsaHsN :: Show a => (String -> a) -> HsName.HsName -> a
showIsaHsN f t = case t of
Qual _ y -> f y
UnQual w -> f w
instance IsaName PNT.PId where
showIsaName (PN x _) = showIsaS x
showIsaString (PN x _) = x
instance IsaName HsName.HsName where
showIsaName = showIsaHsN showIsaS
showIsaString = showIsaHsN id
instance IsaName PosName.HsName where
showIsaName (SN x _) = showIsaName x
showIsaString (SN x _) = showIsaString x
instance IsaName PNT.PName where
showIsaName (PN x _) = showIsaName x
showIsaString (PN x _) = showIsaString x
instance IsaName PNT where
showIsaName (PNT x _ _) = showIsaName x
showIsaString (PNT x _ _) = showIsaString x
instance IsaName a => IsaName (HId a) where
showIsaName t = case t of
HsVar x -> showIsaName x
HsCon x -> showIsaName x
showIsaString t = case t of
HsVar x -> showIsaString x
HsCon x -> showIsaString x
showIsaHsTypeString :: HsType -> String
showIsaHsTypeString (Typ t) = case t of
HsTyFun _ _ -> "Fun"
HsTyApp _ _ -> "App"
HsTyVar x -> showIsaString x
HsTyCon x -> showIsaString x
HsTyForall _ _ x -> showIsaHsTypeString x
-------- auxiliary name functions depending on IsaSign ---------------------
joinNames :: [String] -> String
joinNames = concatMap (++ "_X")
isCont :: Continuity -> Bool
isCont x = x == IsCont True || x == IsCont False
transTN :: Continuity -> String -> String -> String
transTN c s1 s2 = let d = transPath s1 s2
ic = isCont c
in if s1 == "Prelude" then case s2 of
"()" -> "unitT"
"Bool" -> if ic then "lBool"
else "bool"
"Int" -> "intT"
"Integer" -> "integerT"
"Char" -> "charT"
"[]" -> if ic then "llist"
else "list"
"Either" -> if ic then "lEither"
else "either"
"Ordering" -> "lOrdering"
"String" -> if ic then "lString"
else "string"
"Maybe" -> if ic then "lMaybe"
else "option"
"(,)" -> if ic then "lprod" else "*"
"Rational" -> if ic then "ratT" else "Rat"
_ -> d
else d
transPath :: String -> String -> String
transPath s1 s2 = showIsaName s1 ++ "_" ++ showIsaName s2
---------------------- DATATYPES -------------------------------------------
-------------------- getting mutually recursive domains in Isabelle --------
getDepDoms :: [[IsaSign.DomainEntry]] -> IsaSign.DomainTab
getDepDoms ls = ordDoms $ abGetDep deDepOn ls
ordDoms :: [[IsaSign.DomainEntry]] -> IsaSign.DomainTab
ordDoms ls = quickSort (orLLift deDepOn) ls
orLLift :: (a -> a -> Bool) -> [a] -> [a] -> Bool
orLLift f as bs = case as of
[] -> False
x:xs -> if genOr (f x) bs == True then True
else (orLLift f xs bs)
genOr :: (a -> Bool) -> [a] -> Bool
genOr f ys = case ys of
[] -> False
x:xs -> if (f x) then True
else (genOr f xs)
deDepOn :: DomainEntry -> DomainEntry -> Bool
deDepOn x y = depOn subTypForm fst (concatMap snd . snd) x y
subTypForm :: Typ -> Typ -> Bool
subTypForm t1 t2 = case t2 of
IsaSign.Type a b cs ->
if a == IsaSign.typeId t1 &&
b == IsaSign.typeSort t1 then True
else any (subTypForm t1) cs
_ -> False
--------------------- getting info about domaintab -------------------------
type AConstTab = Map.Map VName (Typ,IsaVT)
data IsaVT = IsaConst | IsaVal deriving (Eq, Show)
getDomType :: AConstTab -> VName -> IsaType
getDomType ctab c = maybe (error "Hs2HOLCFaux.getDomType")
(getHeadType . fst) $ Map.lookup c ctab
isFunArrow :: String -> Bool
isFunArrow name = elem name [funS, cFunS, lFunS]
getHeadType :: IsaType -> IsaType
getHeadType t = case t of
IsaSign.Type name _ [_, t2] | isFunArrow name -> getHeadType t2
_ -> t
getFieldTypes :: AConstTab -> VName -> [IsaType]
getFieldTypes ctab c = maybe [] (argTypes . fst) $ Map.lookup c ctab
argTypes :: IsaType -> [IsaType]
argTypes a = case a of
IsaSign.Type name _ [b, c] | isFunArrow name -> b : argTypes c
_ -> []
------------------------- Instances ----------------------------------------
groupInst :: [IsaTypeInsts] -> [IsaTypeInsts]
groupInst db =
remove_duplicates [(y,
remove_duplicates $ concat
[b | (a, b) <- db, a == y]) | (y, _) <- db]
----------------------- TERMS ----------------------------------------------
----- lifting, tuples, multiple abstractions and applications, fixpoints ---
funFliftbin :: Term -> Term
funFliftbin f = termMAppl NotCont (conDouble lliftbinS) [f]
funFlift2 :: Term -> Term
funFlift2 f = termMAppl NotCont (conDouble flift2S) [f]
varDouble :: String -> Term
varDouble = Free . mkVName
termMAbs :: Continuity -> [Term] -> Term -> Term
termMAbs c ts t =
case ts of
[] -> t
v:vs -> if isDicConst v then (termMAbs c vs t) else
IsaSign.Abs v (termMAbs c vs t) c
termMAppl :: Continuity -> Term -> [Term] -> Term
termMAppl c t ts =
let prelTest vn = any (\x -> isPrefixOf x $ IsaSign.orig vn)
[ "inst__Prelude_"
, "derived__Prelude_"]
in case (t, ts) of
(Const vn _, [a]) | isDicConst t || prelTest vn -> a
(_, []) -> t
(Const _ p, v : vs) -> case v of
Const vn _ | isDicConst v || prelTest vn -> termMAppl c t vs
_ -> case (kon p,c) of
(TCon,IsCont True) -> let ee = IsCont False
in termMAppl ee (App t v ee) vs
_ -> termMAppl c (App t v c) vs
(_, v : vs) -> case v of
Const vn _ | isDicConst v || prelTest vn -> termMAppl c t vs
_ -> termMAppl c (App t v c) vs
termBAppl :: Continuity -> Term -> Term -> Term -> Term
termBAppl c t1 t2 t3 = termMAppl c t1 [t2,t3]
----------------------- connectives ---------------------------------------
tupleSelector :: Int -> Int -> Term -> Continuity -> Term
tupleSelector mx n t c
| mx < 2 = error "Hs2HOLCFaux.tupleSelector1"
| n == 0 = error "Hs2HOLCFaux.tupleSelector2"
| mx < n = error "Hs2HOLCFaux.tupleSelector3"
| n == mx = tupleSelect (n - 1) t c
| True = termMAppl c (fstPT c)
$ [tupleSelect (n - 1) t c]
tupleSelect :: Int -> Term -> Continuity -> Term
tupleSelect n t c = case n of
0 -> t
_ -> tupleSelect (n - 1)
(termMAppl c (sndPT c) [t]) c
--------------------------------- term filters ----------------------------
isDicConst :: Term -> Bool
isDicConst t = case t of
Const vn _ | IsaSign.orig vn == "DIC" -> True
Free vn | IsaSign.orig vn == "DIC" -> True
_ -> False
constFilter :: Term -> [Term]
constFilter t = case t of
IsaSign.Const _ _ -> [t]
IsaSign.Abs _ x _ -> constFilter x
IsaSign.App x y _ -> concatMap constFilter [x, y]
IsaSign.If x y z _ -> concatMap constFilter [x, y, z]
IsaSign.Case x ys -> concatMap constFilter $ x : map snd ys
IsaSign.Let xs y -> concatMap constFilter $ y : map snd xs
IsaSign.IsaEq x y -> concatMap constFilter [x, y]
IsaSign.Tuplex xs _ -> concatMap constFilter xs
_ -> [t]
elPos :: [Term] -> Term -> Maybe Int
elPos ls x = fmap (+ 1) $ findIndex (constEq x) ls
------------------ subterm extraction -------------------------------------
extFBody :: Term -> (Term, [Term])
extFBody t' = extFB t' []
where
extFB t as = case t of
IsaSign.Abs x b _ -> extFB b (x : as)
_ -> (t, reverse as)
extTBody :: Term -> (Term, [Term])
extTBody t' = extTB t' []
where
extTB t as = case t of
IsaSign.App a x _ -> extTB a (x : as)
_ -> (t, reverse as)
------------------ eliminating case expressions ---------------------------
destCaseS :: Continuity -> IsaTerm -> IsaTerm -> [IsaTerm] -- t is def rh
destCaseS c d t =
[holEq (termMAppl c d xs) y | (xs,y) <- destCaseU (extFBody t,[])]
destCaseU :: ((IsaTerm,[IsaPattern]),[IsaPattern]) -> [([IsaPattern],IsaTerm)]
destCaseU ((t,rs),ks) = case (t,rs) of
(Case v ls, vv : vs) -> if v == vv
then [(ks ++ [l], termMAbs NotCont vs m) | (l,m) <- ls]
else destCaseU ((t,vs), ks ++ [vv])
_ -> error "Hs2HOLCFaux.destCaseU"
destCase :: IsaTerm -> (VName -> VName) -> [(IsaPattern,IsaTerm)]
destCase t f = let w = extFBody t in case w of
(Case v ls, _ : vs) -> case v of
Free n ->
[(renVars (Free (f n)) [l] l, -- repl. l if l is a var.
renVars (Free (f n))
[l] (termMAbs NotCont vs m)) | (l, m) <- ls]
_ -> [(l,termMAbs NotCont vs m) | (l, m) <- ls]
_ -> error "Hs2HOLCFaux.destCase"
--------------------------- equivalence on terms ---------------------------
constEq :: Term -> Term -> Bool
constEq t1 t2 = case (t1,t2) of
(Const m x, Const n y) -> n == m && typEq (typ x) (typ y)
_ -> False
simTerms :: Term -> Term -> Bool
simTerms t1 t2 = case (t1, t2) of
(IsaSign.Const x w, IsaSign.Const y z) ->
x == y && typSim (typ w) (typ z)
(IsaSign.Free _, IsaSign.Free _) -> True
(IsaSign.Abs _ _ c, IsaSign.Abs _ _ d) -> c == d
(If _ _ _ c, If _ _ _ d) -> c == d
(Case _ _, Case _ _) -> True
(Let _ _, Let _ _) -> True
(IsaEq _ _, IsaEq _ _) -> True
(Tuplex _ _, Tuplex _ _) -> True
_ -> False
-------------------- replacement functions -------------------------------
{- in term t, replaces variable f for variables in ls -}
renVars :: Term -> [Term] -> Term -> Term
renVars f ls t = case t of
IsaSign.Free _ -> if elem t ls then f else t
IsaSign.Abs v x c -> IsaSign.Abs v (renVars f ls x) c
IsaSign.App x y c -> IsaSign.App (renVars f ls x) (renVars f ls y) c
IsaSign.If x y z c ->
IsaSign.If (renVars f ls x) (renVars f ls y) (renVars f ls z) c
IsaSign.Case x ys ->
IsaSign.Case (renVars f ls x) [(a,renVars f ls b) | (a,b) <- ys]
IsaSign.Let xs y ->
IsaSign.Let [(a,renVars f ls b) | (a,b) <- xs] (renVars f ls y)
IsaSign.IsaEq x y -> IsaSign.IsaEq (renVars f ls x) (renVars f ls y)
IsaSign.Tuplex xs c -> IsaSign.Tuplex (map (renVars f ls) xs) c
_ -> t
renFuns :: (Term -> Maybe Term) -> Term -> Term
renFuns f t = case t of
IsaSign.Abs v x c -> IsaSign.Abs v (renFuns f x) c
IsaSign.App x y c -> maybe (IsaSign.App (renFuns f x) (renFuns f y) c) id
$ f t
IsaSign.If x y z c ->
IsaSign.If (renFuns f x) (renFuns f y) (renFuns f z) c
IsaSign.Case x ys ->
IsaSign.Case (renFuns f x) [(a,renFuns f b) | (a,b) <- ys]
IsaSign.Let xs y ->
IsaSign.Let [(a,renFuns f b) | (a,b) <- xs] (renFuns f y)
IsaSign.IsaEq x y -> IsaSign.IsaEq (renFuns f x) (renFuns f y)
IsaSign.Tuplex xs c -> IsaSign.Tuplex (map (renFuns f) xs) c
_ -> t
---------------------- SENTENCES ------------------------------------------
--------------------- getting info from sentences -------------------------
newConstTab :: Continuity -> [Named IsaSign.Sentence] -> ConstTab
newConstTab c ls = if isCont c then Map.empty else
Map.fromList [(mkVName $ extAxName x, extAxType x) | x <- ls]
extAxName :: Named Sentence -> String
extAxName s = senAttr s
extAxType :: Named Sentence -> Typ
extAxType s = case sentence s of
ConstDef (IsaEq (Const _ t) _) | isAxiom s -> (typ t)
RecDef _ ((App (App _ (App (Const _ t) _ _) _) _ _ : _) : _)
| isAxiom s -> (typ t)
_ -> noTypeT
extFunTerm :: Named Sentence -> Term
extFunTerm s = case sentence s of
ConstDef (IsaEq t _) -> fst $ extTBody t
_ -> error "Hs2HOLCFaux.extFunTerm"
extLeftH :: Named Sentence -> Term
extLeftH s = case sentence s of
ConstDef (IsaEq t _) -> t
_ -> error "Hs2HOLCFaux.extLeftH"
extRightH :: Named Sentence -> Term
extRightH s = case sentence s of
ConstDef (IsaEq _ t) -> t
_ -> error "Hs2HOLCFaux.extRightH"
{- left comp is the def name, right comp are the constants in the def -}
sentAna :: Named Sentence -> (Term, [Term])
sentAna s = case sentence s of
ConstDef (IsaEq l r) | isAxiom s -> (l, constFilter r)
_ -> error "Hs2HOLCFaux.sentAna"
------------------ checking for mutually recursive function defs ----------
getDepSent :: [[Named Sentence]] -> [[Named Sentence]]
getDepSent ls = abGetDep sentDepOn ls
getExpRole :: Named Sentence -> ExpRole
getExpRole n = case (extFunTerm n) of
Const _ x -> case kon x of
TMet -> InstDef
_ -> FunDef
_ -> error "Hs2HOLCFaux, getExpRole"
sentDepOn :: Named Sentence -> Named Sentence -> Bool
sentDepOn x y = case getExpRole x of
InstDef ->
depOn (\ u v -> simTerms u v
&& typEq (typ $ termType u) (typ $ termType v))
(fst . sentAna) (snd . sentAna) x y
FunDef ->
depOn (\ u v -> simTerms u v
&& typSim (typ $ termType u) (typ $ termType v))
(fst . sentAna) (snd . sentAna) x y
------------------- adding fixpoints ---------------------------------------
fixMRec :: Continuity -> [[Named Sentence]] -> [Named Sentence]
fixMRec c ls = let xs = getDepSent ls
in addFixPoints c xs
addFixPoints :: Continuity -> [[Named Sentence]] -> [Named Sentence]
addFixPoints c xs = concatMap (fixPoint c) xs
fixPoint :: Continuity -> [Named Sentence] -> [Named Sentence]
fixPoint c xs = case xs of
[a] -> if sentDepOn a a then [mapNamed ( \ s -> case s of
ConstDef (IsaEq lh rh) -> case c of
IsCont _ ->
RecDef fixrecS [[holEq lh rh]]
NotCont -> RecDef primrecS [destCaseS c lh rh]
_ -> error "Hs2HOLCFaux.fixPoint") a]
else xs
_ : _ -> case c of
IsCont _ -> let
jn = joinNames (map extAxName xs) -- name is ininfluential here
ys = [[holEq (extLeftH x) $ extRightH x] | x <- xs]
in [makeNamed jn $ RecDef fixrecS ys]
NotCont -> let
jj = joinNames (map extAxName xs)
jn = mkVName jj
jt1 = headTailsType (map extAxType xs)
(jta, jts) = headTailsMT jt1
jt = mkFunType jta (typTuple NotCont jts)
jl = Const jn $ dispNN jt
n = length xs
rs = map extRightH xs
ls = map extFunTerm xs
yys = [destCase x (\ _ -> jn) | x <- rs]
yyys = reassemble yys
zs = [(p,Tuplex (map (renFuns (newFCons (Const jn noType) ls)) ts)
NotCont)
| (p,ts) <- Map.toList yyys]
os = [mkNewDef x jj n m jt | (x,m) <- listEnum xs]
ps = makeNamed jj (makeRecDef jl zs) : os
in ps
[] -> []
mkNewDef :: Named Sentence -> String ->
Int -> Int -> Typ -> Named Sentence
mkNewDef s z x y t = let -- x is the max
a = NotCont
zy = typeTupleSel t y
in mapNamed ( \ sen -> case sen of
ConstDef (IsaEq lh rh) -> case (lh, extFBody rh) of
(Const nam _, (_, w : ws)) ->
ConstDef $ IsaEq (Const nam $ dispNN zy) $
termMAbs a (w:ws) $ termMAppl a (tupleSelector x y
(App (Const (mkVName z) noType) w a) a) ws
_ -> error "Hs2HOLCFaux.mkNewDef1"
_ -> error "Hs2HOLCFaux.mkNewDef2") s
makeRecDef :: Term -> [(Term,Term)] -> Sentence
makeRecDef t ls =
RecDef primrecS [map (\ (a, b) -> holEq (App t a NotCont) b) ls]
reassemble :: [[(Term,Term)]] -> Map.Map Term [Term]
reassemble ls = foldr
(\ (ft, sd) ms ->
Map.insert ft (sd : Map.findWithDefault [] ft ms) ms)
Map.empty (concat ls)
newFCons :: Term -> [Term] -> Term -> Maybe Term
newFCons t ls k = case k of
App n w NotCont -> case elPos ls n of
Nothing -> Nothing
Just i ->
Just $ tupleSelector (length ls) i (IsaSign.App t w NotCont) NotCont
_ -> Nothing
-------------------------- TYPES ------------------------------------------
------------------------ tuples, lifting ----------------------------------
typTuple :: Continuity -> [Typ] -> Typ
typTuple c ts = case ts of
[] -> noTypeT
[a] -> a
a : as -> (if isCont c then mkContProduct else prodType) a (typTuple c as)
typeTupleSel :: Typ -> Int -> Typ
typeTupleSel t n = let
(p,c) = splitFunT t
q = (tupleDes c) !! (n-1)
in mkFunType p q
tupleDes :: Typ -> [Typ]
tupleDes t = case t of
IsaSign.Type "*" _ [t1,t2] -> t1:(tupleDes t2)
_ -> [t]
------------------- function types -----------------------------------
headTailsType :: [Typ] -> [(Typ, Typ)]
headTailsType ls = case chkTHead ls of
False -> error "Hs2HOLCFaux.headTailsType"
True -> map splitFunT ls
splitFunT :: Typ -> (Typ, Typ)
splitFunT x = case x of
IsaSign.Type "=>" _ [i, b] -> (i,b)
_ -> error "Hs2HOLCF, headTail"
-- checks that all types in the list are equivalent in the first argument
-- and that all variables occur in that argument
chkTHead :: [IsaType] -> Bool
chkTHead ls = case ls of
IsaSign.Type "=>" _ [x,n] : IsaSign.Type "=>" s [y,m] : ns ->
if typEq x y && mkTVarMap id x == mkTVarMap id n then
chkTHead (IsaSign.Type "=>" s [y, m] : ns) else False
[IsaSign.Type "=>" _ [x,n]] -> if mkTVarMap id x == mkTVarMap id n
then True else False
_ -> False
----------------------- equivalence of types modulo variables name ------
typSim :: Typ -> Typ -> Bool
typSim t1 t2 = case (t1, t2) of
(IsaSign.Type _ _ ls1, IsaSign.Type _ _ ls2) ->
typeId t1 == typeId t2 && typLSim ls1 ls2
(TFree _ _, TFree _ _) -> True
(TVar _ _, TVar _ _) -> True
_ -> False
typLSim :: [Typ] -> [Typ] -> Bool
typLSim ls1 ls2 = case (ls1, ls2) of
([], []) -> True
(a : as, b : bs) -> typSim a b && typLSim as bs
_ -> False
typEq :: Typ -> Typ -> Bool --make some distinction for case noType?
typEq t1 t2 = t1 == noTypeT || t2 == noTypeT || case (t1, t2) of
(IsaSign.Type _ _ ls1, IsaSign.Type _ _ ls2) ->
typeId t1 == typeId t2 && typeSort t1 == typeSort t2 && typLEq ls1 ls2
(TFree _ _, TFree _ _) -> typeSort t1 == typeSort t2
(TVar _ _, TVar _ _) -> typeSort t1 == typeSort t2
_ -> False
typLEq :: [Typ] -> [Typ] -> Bool
typLEq ls1 ls2 = case (ls1, ls2) of
([], []) -> True
(a : as, b : bs) -> typEq a b && typLEq as bs
_ -> False
------------------------ type renaming -----------------------------------
applyTyRen :: Int -> Typ -> Typ
applyTyRen n t = case t of
TFree x s -> TFree (x ++ "XX" ++ show n) s
IsaSign.Type a b cs -> IsaSign.Type a b $ map (applyTyRen n) cs
_ -> t
-------------------------- type var maps ---------------------------------
headTailsMT :: [(Typ,Typ)] -> (Typ, [Typ])
headTailsMT ls = let
ks = [(mkTVarMap (applyTyRen 0) i, (i, b)) | (i, b) <- ls]
in case ks of
[] -> error "Hs2HOLCFaux, headTailsType"
(f,(x,_)):_ -> let
zs = [(renMap f g, y) | (g,(_,y)) <- ks]
zz = [applyTVM g y | (g, y) <- zs]
w = applyTyRen 0 x
in (w, zz)
renMap :: Map.Map Typ Typ -> Map.Map Typ Typ -> Map.Map Typ Typ
renMap f g = if Map.size f == Map.size g then
Map.fromList [(fst $ Map.elemAt n f, snd $ Map.elemAt n g)
| n <- [0..((Map.size f) - 1)]]
else error "HsHOLCFaux, renMap"
mkTVarMap :: (Typ -> Typ) -> Typ -> Map.Map Typ Typ
mkTVarMap f t = case t of
Type _ _ xs -> Map.unions [mkTVarMap f y | y <- xs]
_ -> Map.singleton t (f t)
applyTVM :: Map.Map Typ Typ -> Typ -> Typ
applyTVM f t = case t of
IsaSign.Type n s vs -> IsaSign.Type n s (map (applyTVM f) vs)
IsaSign.TFree _ _ -> maybe t id $ Map.lookup t f
_ -> t
------------------------ replacement functions -------------------------
-- constrains variables in t with sort constraints in cs
constrVarClass :: IsaType -> [(IsaType,Sort)] -> IsaType
constrVarClass t cs = typeVarsRep addSort [(typeId x,y) | (x,y) <- cs] t
addSort :: [(TName,Sort)] -> TName -> Sort -> Maybe Typ
addSort cs n s = do
as <- Map.lookup n (Map.fromList cs)
return $ TFree n $ remove_duplicates $ s ++ as
-- replaces in t variables of class c with nt
repVarClass :: IsaType -> IsaClass -> IsaType -> IsaType
repVarClass t c nt = typeVarsRep repVC (c,nt) t
repVC :: (IsaClass, IsaType) -> TName -> IsaSort -> Maybe IsaType
repVC (c, t) _ s = if elem c s then return t else Nothing
typeVarsRep :: (a -> TName -> Sort -> Maybe IsaType) -> a ->
IsaType -> IsaType
typeVarsRep f ls t = case t of
IsaSign.Type n s vs -> IsaSign.Type n s (map (typeVarsRep f ls) vs)
IsaSign.TFree n s -> maybe t id $ f ls n s
IsaSign.TVar _ _ -> t
-- replace type var in t with type x; used in instantiation; assumed
-- that t has just one variable
replaceTyVar :: IsaType -> IsaType -> IsaType
replaceTyVar x t = if x == noTypeT then t else case t of
IsaSign.Type n s vs -> IsaSign.Type n s (map (replaceTyVar x) vs)
IsaSign.TFree _ _ -> x
IsaSign.TVar _ _ -> x