Hs2HOLCFaux.hs revision 588e7653cf4cd4a5175739e0310013d7ba130b8c
{-# LANGUAGE TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Copyright : (c) Paolo Torrini and Till Mossakowski and Uni Bremen 2004-2005
License : GPLv2 or higher, see LICENSE.txt
Maintainer : paolot@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (depends on programatica using MPTC)
auxiliary functions for the embedding comorphism from Haskell to Isabelle
-}
module Comorphisms.Hs2HOLCFaux
( PrDecl
, aweLits
, mthEq
, removeEL
, extAxType
, extTBody
, fixMRec
, newConstTab
, getTermName
, extRightH
, ExpRole(..)
, ISign
, IsaSort
, IsaType
, IsaPattern
, IsaTerm
, IsaName(..)
, xDummy
, termMAbs
, termMAppl
, termBAppl
, PrExp
, PrPat
, renVars
, remove_duplicates
, HsType
, HsScheme
, HsId
, getInstClass
, getInstType
, repVarClass
, constrVarClass
, getLitName
, transTN
, transPath
, showIsaS
, funFliftbin
, funFlift2
, VaMap
, AConstTab
, liftMapByListD
, nothingFiOut
, IsaTypeInsts
, IsaVT(..)
, TyMap
, liftMapByList
, HsTypeInfo
, HsInstance
, HsInstances
, extClassInfo
, extAbbrsInfo
, groupInst
, getMainInstType
, prepInst
, checkTyCons
, getDepDoms
, getDomType
, getFieldTypes
, isCont
, replaceTyVar
, varDouble
, mthTy
, mthAll
, enElem
, getContinuity
) where
import Data.List
import qualified Data.Map as Map
import Common.AS_Annotation
import Common.Utils (number, nubOrd)
-- Haskell (Programatica)
import SourceNames
import TiTypes
import TiInstanceDB
import PNT
import PosName
import UniqueNames
import TiPropDecorate
import PropSyntaxStruct as HsName
import TiDecorate
-- Isabelle
import Isabelle.IsaSign as IsaSign
import Isabelle.IsaConsts as IsaConsts
import Isabelle.Translate as Translate
import Debug.Trace
------------------------------- TYPE synonyms --------------------------
------------------ Haskell ---------------------------------------------
type HsInstance = TiInstanceDB.Instance PNT
type HsInstances = [TiInstanceDB.Instance PNT]
type HsPred = TiTypes.Pred PNT
type HsType = TiTypes.Type PNT -- same as HsPred
type HsClass = TiTypes.Type PNT
type HsScheme = TiTypes.Scheme PNT
type HsId = HsIdentI PNT
type HsTypeInfo = TiTypes.TypeInfo PNT
type PrDecl = TiPropDecorate.TiDecl PNT
type PrExp = TiPropDecorate.TiExp PNT
type PrPat = TiDecorate.TiPat PNT
type HId i = HsIdentI i
type VaMap = Map.Map HsId HsScheme
type TyMap = Map.Map HsId (Kind, HsTypeInfo)
------------------ Isabelle --------------------------------------------
type ISign = IsaSign.Sign
type IsaSort = IsaSign.Sort
type IsaType = IsaSign.Typ
type IsaTerm = IsaSign.Term
type IsaPattern = IsaSign.Term
type IsaTypeInsts = (TName, [(IsaClass, [(IsaType, [IsaClass])])])
-------------------------- list functions ------------------------------
removeEL :: [[a]] -> [[a]]
removeEL = filter (not . null)
remove_duplicates :: Ord a => [a] -> [a]
remove_duplicates = nubOrd
--------------------------- filters -----------------------------------
nothingFiOut :: [(a, (Maybe b, c))] -> [(a, (b, c))]
nothingFiOut ls = [(x, (y, w)) | (x, (Just y, w)) <- ls]
--------------------------- lifting function ---------------------------
liftMapByList :: (x -> [(a, b)]) -> ([(c, d)] -> y)
-> (a -> c) -> (b -> d) -> x -> y
liftMapByList ma mb h k f = mb [(h a, k b) | (a, b) <- ma f]
liftMapByListD :: (x -> [a]) -> ([c] -> y) -> (a -> b1)
-> (a -> b2) -> ([(b1, b2)] -> [c]) -> x -> y
liftMapByListD l1 l2 h k g f = l2 $ g [ (h a, k a) | a <- l1 f]
-------------------- generic checking of mutual dependencies ----------
getDepDoms :: IsaSign.DomainTab -> IsaSign.DomainTab
getDepDoms ls = abGetDep deDepOn ls
abGetDep :: Ord a => (a -> a -> Bool) -> [[a]] -> [[a]]
abGetDep f ls = case ls of
x:xs ->
remove_duplicates $
removeEL (map remove_duplicates
(checkDep (liftDep (mutRel f)) (xs) [x] []))
[] -> []
checkDep :: ([x] -> [x] -> Bool) -> [[x]] -> [[x]] -> [[x]] -> [[x]]
checkDep f ls ms cs = case ls of
a:as -> case ms of
b:bs ->
if (f a b) then checkDep f ((a ++ b):as) bs cs else
checkDep f (a:as) bs (b:cs)
[] -> checkDep f as (a:cs) []
[] -> ms
-- mutual dependence
mutRel :: (a -> a -> Bool) -> a -> a -> Bool
mutRel f x y = f x y && f y x
-------------------- HASKELL representation -------------------------------
----------------------- check functions -----------------------------------
checkTyCons :: HsId -> Bool
checkTyCons d = case d of
HsCon _ -> True
_ -> False
---------------------------- get functions -------------------------------
------------------- getting info from Haskell types ----------------------
getLitName :: HsType -> PNT
getLitName (Typ t) = case t of
HsTyVar x -> x
HsTyCon x -> x
_ -> error "Hs2HOLCFaux.getLitName"
------------------ getting class and type ouf of predicate --------------
getInstType :: HsPred -> HsType
getInstType x = case x of (Typ (HsTyApp _ t)) -> t
_ -> trace ("\n TYPE: " ++ show x) $
error "Hs2HOLCFaux.getInstType"
getInstClass :: HsPred -> HsType
getInstClass x = case x of (Typ (HsTyApp c _)) -> c
_ -> trace ("\n CLASS: " ++ show x) $
error "Hs2HOLCFaux.getInstClass"
----------------------- getting class information -----------------------
extClassInfo :: HsTypeInfo -> [HsClass]
extClassInfo p = case p of
TiTypes.Class a _ _ _ -> map getInstClass a
_ -> error "Hs2HOLCFaux.extClassInfo"
--------------------------- getting info on type syns -------------------
extAbbrsInfo :: HsTypeInfo -> ([PNT], HsType)
extAbbrsInfo p = case p of
TiTypes.Synonym ls t -> (ls, t)
_ -> error "Hs2HOLCFaux.extAbbrsInfo"
-------------- get arity information from Haskell instances ------------
getInstPrems :: HsInstance -> [HsPred]
getInstPrems (_, IE _ _ ps) = ps
getMainInstType :: HsInstance -> HsType
getMainInstType (i, _) = getInstType i
getMainInstClass :: HsInstance -> HsClass
getMainInstClass (i, _) = getInstClass i
prepInst :: HsInstance -> (HsClass, [(HsType, [HsClass])])
prepInst i = (getMainInstClass i, prepInst1 i)
prepInst1 :: HsInstance -> [(HsType, [HsClass])]
prepInst1 i =
[(x, [getInstClass y | y <-
getInstPrems i, showIsaHsTypeString (getInstType y)
== showIsaHsTypeString x])
| x <- nub $ map getInstType (getInstPrems i)]
--------------------- ISABELLE representation ---------------------------
data ExpRole = FunDef | InstDef -- no PLogic yet
deriving (Ord,Eq,Show)
----------------------------- constants ---------------------------------
xDummy :: IsaTerm
xDummy = conDouble "dummy"
holEq :: IsaTerm -> IsaTerm -> IsaTerm
holEq t1 t2 = termMAppl NotCont (con eqV) [t1, t2]
getTermName :: Term -> Maybe String
getTermName a = case a of
Const x _ -> Just $ new x
Free x -> Just $ new x
_ -> Nothing -- "_"
------------------------ Haskell names --------------------------------
enElem :: String -> [String] -> Bool
enElem s ls = let
ks = map showIsaName ls
hs = map (\x -> x ++ "DF") ks
js = map (\x -> x ++ "I") hs
in
if elem s ks then True
else if elem s hs then True
else if elem s js then True
else False
mthTy :: Continuity -> String -> String -> IsaType
mthTy c k p = if enElem p ["==","/=","<","<=",">",">="]
then aaT c k (boolT c)
else if enElem p (["min","max","+","-","*","quot","rem"]
++ ["div","mod","\\"])
then aaA c k
else if enElem p
["succ","pred","negate","abs","signum","recip"]
then aA c k
else if enElem p ["enumFromThen","enumFromTo"]
then aaL c k
else if enElem p ["minBound","maxBound"]
then TFree "a" ((IsaClass k):(sortT c))
else if enElem p ["quotRem","divMod"]
then aaP c k
else if enElem p ["toEnum"]
then aT c k (intT c)
else if enElem p ["enumFrom"]
then aL c k
else if enElem p ["enumFromThenTo"]
then aaaL c k
else if enElem p ["fromEnum"]
then tA c k (intT c)
else if enElem p ["fromInteger"]
then tA c k (integerT c)
else if enElem p ["fromFractional"]
then tA c k (fracT c)
else if enElem p ["toInteger"]
then aT c k (integerT c)
else if enElem p ["compare"]
then aaT c k (orderingT c)
else trace (show p) $ error "HsHOLCFaux, mthTy"
aaT :: Continuity -> String -> IsaType -> IsaType
aaT c k h = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [w,w] $ h
aaA :: Continuity -> String -> IsaType
aaA c k = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [w,w] w
aL :: Continuity -> String -> IsaType
aL c k = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [w] $ listT c w
aaL :: Continuity -> String -> IsaType
aaL c k = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [w,w] $ listT c w
aaaL :: Continuity -> String -> IsaType
aaaL c k = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [w,w,w] $ listT c w
aaP :: Continuity -> String -> IsaType
aaP c k = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [w,w] $ prodT c w w
tA :: Continuity -> String -> IsaType -> IsaType
tA c k h = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [h] $ w
aT :: Continuity -> String -> IsaType -> IsaType
aT c k h = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [w] $ h
aA :: Continuity -> String -> IsaType
aA c k = let w = TFree "a" ((IsaClass k):(sortT c))
in curryFunT c [w] w
-- method names
mthEq,mthOrd,mthEnum,mthBounded,mthNum,mthIntegral :: [String]
mthMonad,mthFunctor,mthAll,aweLits,mthFractional :: [String]
mthEq = ["==", "/="]
mthOrd = ["compare", "<", "<=", ">", ">=", "max", "min"]
mthEnum = ["succ", "pred", "toEnum", "fromEnum", "enumFrom",
"enumFromThen", "enumFromTo", "enumFromThenTo"]
mthBounded = ["minBound", "maxBound"]
mthNum = ["+", "-", "*", "negate", "abs", "signum", "fromInteger"]
mthIntegral = ["quot", "rem", "div", "mod", "quotRem", "divMod", "toInteger"]
mthMonad = ["return", ">>=", ">>", "fail"]
mthFunctor = ["fmap"]
mthFractional = ["/","recip","fromRational"]
mthAll = mthEq ++ mthOrd ++ mthEnum ++ mthNum
++ mthIntegral ++ mthFractional ++ mthBounded
aweLits = mthMonad ++ mthFunctor ++ mthEq ++ ["+", "-", "*"]
nameListA, nameListB, nameListC, nameListD :: [String]
nameListE, nameListF, nameListH :: [String]
-- Special translation - operators
nameListA = ["&&", "||", "==", "/=", "<", "<=", ">", ">=", "+",
"*", "-", "^",
"^^", "++", "!!", "/", ".", "$", "$!", ">>=", ">>"]
-- dual translation - constructors
nameListB = ["()","(,)","True","False",":","[]","Just","Nothing"]
-- dual translation operators
nameListC = ["primError","return"]
-- other constructors
nameListD = ["ET","EQ","GT","Left","Right"]
-- Prelude functions
nameListE = -- map (\x -> x ++ "'")
["not","min","max","negate","abs","signum",
"fromInteger","succ","pred","fromEnum","toEnum","enumFrom",
"enumFromThen","enumFromTo","enumFromThenTo",
"minBound","maxBound","toRational","quot","rem","div","mod",
"quotRem","divMod","toInteger","otherwise","either", "maybe",
"fst","snd","id","curry","uncurry","const","until","asTypeOf",
"odd","even","subtract","flip","gcd","lcm","seq","error",
"undefined","fromRational","recip","powAux","powBux"]
-- Prelude list functions
nameListF = -- map (\x -> x ++ "'")
["map","filter","concat","concatMap","head","last","tail",
"init","null","length","foldl","foldl1","scanl","scanl1",
"foldr","foldr1","scanr","scanr1","iterate","repeat",
"replicate","cycle","take","drop","splitAt","takeWhile",
"dropWhile","span","break","lines","words","unlines",
"unwords","reverse","and","or","any","all","elem","notElem",
"lookup","sum","product","maximum","minimum","zip","zip3",
"zipWith","zipWith3","unzip","unzip3"]
-- hidden
nameListH = ["flip","&&","||","conj","disj","error","otherwise",
"comp","subtract","map",".","not","break","fst","snd"]
primedS :: String -> String
primedS s = s ++ "'"
trOSym :: String -> String
trOSym s = case s of
"&&" -> "conj"
"||" -> "disj"
"==" -> "="
"/=" -> "~="
"<" -> "less"
"<=" -> "leq"
">" -> "more"
">=" -> "meq"
"+" -> "+"
"*" -> "*"
"-" -> "-"
"^" -> "pow"
"^^" -> "fpow"
"++" -> "bconcat"
"!!" -> "nth"
"/" -> "frac"
"." -> "comp"
"$" -> "apply"
"$!" -> "sapply"
">>=" -> "mbind"
">>" -> "mbbind"
_ -> error "Hs2HOLCFaux,trOSym"
transPrelude :: (String -> String) -> String -> String
transPrelude f s = let ns = init s
in if elem s (nameListB ++ nameListC ++ nameListD) then s
else if elem s (nameListE ++ nameListF)
then (s ++ (if elem s (mthAll ++ nameListH ++ ["tail","head"])
then "H" else "U"))
else if elem s (map primedS (nameListE ++ nameListF))
then (ns ++ (if elem ns (mthAll ++ nameListH)
then "H" else "U"))
else if elem s nameListA
then if elem s aweLits then trOSym s
else (trOSym s ++ (if elem s (mthAll ++ nameListH)
then "H" else "U"))
else if elem ns nameListA && last s == '#'
then if elem ns aweLits then trOSym ns
else (trOSym ns ++ (if elem ns (mthAll ++ nameListH)
then "H" else "U"))
else if take 9 s == "default__"
then transPrelude f (drop 9 s) ++ "DF"
else if take 3 s == "$--"
then transPrelude f (drop 3 s) ++ "I"
else f s
--------------------------- Name translation ----------------------------
-- Translating to strings compatible with Isabelle
class IsaName a where
showIsaName :: a -> String
showIsaString :: a -> String
showIsaS :: String -> String
showIsaS s = case s of
_ -> transPrelude (transConstStringT HOLCF_thy) s
instance IsaName String where
showIsaName x = showIsaS x
showIsaString x = x
showIsaHsN :: Show a => (String -> a) -> HsName.HsName -> a
showIsaHsN f t = case t of
Qual _ y -> f y
UnQual w -> f w
instance IsaName PNT.PId where
showIsaName (PN x _) = showIsaS x
showIsaString (PN x _) = x
instance IsaName HsName.HsName where
showIsaName = showIsaHsN showIsaS
showIsaString = showIsaHsN id
instance IsaName PosName.HsName where
showIsaName (SN x _) = showIsaName x
showIsaString (SN x _) = showIsaString x
instance IsaName PNT.PName where
showIsaName (PN x _) = showIsaName x
showIsaString (PN x _) = showIsaString x
instance IsaName PNT where
showIsaName (PNT x _ _) = showIsaName x
showIsaString (PNT x _ _) = showIsaString x
instance IsaName a => IsaName (HId a) where
showIsaName t = case t of
HsVar x -> showIsaName x
HsCon x -> showIsaName x
showIsaString t = case t of
HsVar x -> showIsaString x
HsCon x -> showIsaString x
showIsaHsTypeString :: HsType -> String
showIsaHsTypeString (Typ t) = case t of
HsTyFun _ _ -> "Fun"
HsTyApp _ _ -> "App"
HsTyVar x -> showIsaString x
HsTyCon x -> showIsaString x
HsTyForall _ _ x -> showIsaHsTypeString x
-------- auxiliary name functions depending on IsaSign -----------------
joinNames :: [String] -> String
joinNames = concatMap (++ "_X")
isCont :: Continuity -> Bool
isCont x = x == IsCont True || x == IsCont False
getContinuity :: Continuity -> IsaTerm -> Continuity
getContinuity c t = case t of
IsaSign.Const _ w -> case (kon w,c) of
(_,NotCont) -> c
(TCon,IsCont _) -> IsCont False -- unlifted for constructors
(_,IsCont _) -> IsCont True -- lifted for the rest
IsaSign.App _ _ _ -> continuity t
IsaSign.Abs _ _ _ -> continuity t
IsaSign.If _ _ _ _ -> continuity t
IsaSign.Tuplex _ _ -> continuity t
_ -> c
transTN :: Continuity -> String -> String -> String
transTN c s1 s2 = let d = transPath s1 s2
ic = isCont c
in if s1 == "Prelude" then case s2 of
"()" -> if ic then "unitT"
else "unit"
"Int" -> if ic then "intT"
else "int"
"Integer" -> if ic then "integerT"
else "int"
"Char" -> if ic then "charT"
else "char"
"Bool" -> if ic then "lBool"
else "bool"
"[]" -> if ic then "llist"
else "list"
"Either" -> if ic then "lEither"
else "either"
"Ordering" -> if ic then "lOrdering"
else "sOrdering"
"String" -> if ic then "lString"
else "string"
"Maybe" -> if ic then "lMaybe"
else "option"
"(,)" -> if ic then "lprod" else "*"
"Rational" -> if ic then "ratT" else "rat"
_ -> d
else d
transPath :: String -> String -> String
transPath s1 s2 = showIsaName s1 ++ "_" ++ showIsaName s2
----------------- getting info about domaintab -------------------------
type AConstTab = Map.Map VName (Typ,IsaVT)
data IsaVT = IsaConst | IsaVal deriving (Eq, Show)
getDomType :: AConstTab -> VName -> IsaType
getDomType ctab c = maybe (error "Hs2HOLCFaux.getDomType")
(getHeadType . fst) $ Map.lookup c ctab
isFunArrow :: String -> Bool
isFunArrow name = elem name [funS, cFunS, lFunS]
getHeadType :: IsaType -> IsaType
getHeadType t = case t of
IsaSign.Type name _ [_, t2] | isFunArrow name -> getHeadType t2
_ -> t
getFieldTypes :: AConstTab -> VName -> [IsaType]
getFieldTypes ctab c = maybe [] (argTypes . fst) $ Map.lookup c ctab
argTypes :: IsaType -> [IsaType]
argTypes a = case a of
IsaSign.Type name _ [b, c] | isFunArrow name -> b : argTypes c
_ -> []
------------------------- Instances ------------------------------------
groupInst :: [IsaTypeInsts] -> [IsaTypeInsts]
groupInst db =
remove_duplicates [(y,
remove_duplicates $ concat
[b | (a, b) <- db, a == y]) | (y, _) <- db]
----------------------- TERMS ------------------------------------------
-- lifting, tuples, multiple abstractions and applications, fixpoints --
funFliftbin :: Term -> Term
funFliftbin f = termMAppl NotCont (conDouble lliftbinS) [f]
funFlift2 :: Term -> Term
funFlift2 f = termMAppl NotCont (conDouble flift2S) [f]
varDouble :: String -> Term
varDouble = Free . mkVName
termMAbs :: Continuity -> [Term] -> Term -> Term
termMAbs c ts t =
case ts of
[] -> t
v:vs -> if isDicConst v then (termMAbs c vs t) else
IsaSign.Abs v (termMAbs c vs t) c
termMAppl :: Continuity -> Term -> [Term] -> Term
termMAppl c t ts =
let prelTest vn = any (\x -> isPrefixOf x $ IsaSign.orig vn)
[ "inst__Prelude_"
, "derived__Prelude_"]
in case (t, ts) of
(Const vn _, [a]) | isDicConst t || prelTest vn -> a
(_, []) -> t
(_, v:vs) -> case v of
Const vn _ | isDicConst v || prelTest vn -> termMAppl c t vs
_ -> termMAppl c (App t v $ getContinuity c t) vs
termBAppl :: Continuity -> Term -> Term -> Term -> Term
termBAppl c t1 t2 t3 = termMAppl c t1 [t2,t3]
termSAppl :: Continuity -> Term -> Term -> Term
termSAppl c t1 t2 = termMAppl c t1 [t2]
----------------------- connectives ------------------------------------
tupleSelector :: Int -> Int -> Term -> Continuity -> Term
tupleSelector mx n t c
| mx < 2 = error "Hs2HOLCFaux.tupleSelector1"
| n == 0 = error "Hs2HOLCFaux.tupleSelector2"
| mx < n = error "Hs2HOLCFaux.tupleSelector3"
| n == mx = tupleSelect (n - 1) t c
| True = termMAppl c (fstPT c)
$ [tupleSelect (n - 1) t c]
tupleSelect :: Int -> Term -> Continuity -> Term
tupleSelect n t c = case n of
0 -> t
_ -> tupleSelect (n - 1)
(termMAppl c (sndPT c) [t]) c
------------------------------ term filters ----------------------------
isDicConst :: Term -> Bool
isDicConst t = case t of
Const vn _ | IsaSign.orig vn == "DIC" -> True
Free vn | IsaSign.orig vn == "DIC" -> True
_ -> False
constFilter :: Term -> [Term]
constFilter t = case t of
IsaSign.Const _ _ -> [t]
IsaSign.Abs _ x _ -> constFilter x
IsaSign.App x y _ -> concatMap constFilter [x, y]
IsaSign.If x y z _ -> concatMap constFilter [x, y, z]
IsaSign.Case x ys -> concatMap constFilter $ x : map snd ys
IsaSign.Let xs y -> concatMap constFilter $ y : map snd xs
IsaSign.IsaEq x y -> concatMap constFilter [x, y]
IsaSign.Tuplex xs _ -> concatMap constFilter xs
_ -> [t]
elPos :: [Term] -> Term -> Maybe Int
elPos ls x = fmap (+ 1) $ findIndex (constEq x) ls
------------------ subterm extraction ----------------------------------
extFBody :: Term -> (Term, [Term])
extFBody t' = extFB t' []
where
extFB t as = case t of
IsaSign.Abs x b _ -> extFB b (x : as)
_ -> (t, reverse as)
extTBody :: Term -> (Term, [Term])
extTBody t' = extTB t' []
where
extTB t as = case t of
IsaSign.App a x _ -> extTB a (x : as)
_ -> (t, reverse as)
--------------- eliminating case expressions ---------------------------
destCaseS :: Continuity -> IsaTerm -> IsaTerm -> [IsaTerm]
destCaseS c d t =
[holEq (termMAppl c d xs) y | (xs,y) <- destCaseU (extFBody t,[])]
destCaseU :: ((IsaTerm,[IsaPattern]),[IsaPattern]) ->
[([IsaPattern],IsaTerm)]
destCaseU ((t,rs),ks) = case (t,rs) of
(Case v ls, vv : vs) -> if v == vv
then [(ks ++ [l], termMAbs NotCont vs m) | (l,m) <- ls]
else destCaseU ((t,vs), ks ++ [vv])
_ -> error "Hs2HOLCFaux.destCaseU"
destCase :: IsaTerm -> (VName -> VName) -> [(IsaPattern,IsaTerm)]
destCase t f = let w = extFBody t in case w of
(Case v ls, _ : vs) -> case v of
Free n ->
[(renVars (Free (f n)) [l] l, -- repl. l if l is a var.
renVars (Free (f n))
[l] (termMAbs NotCont vs m)) | (l, m) <- ls]
_ -> [(l,termMAbs NotCont vs m) | (l, m) <- ls]
_ -> error "Hs2HOLCFaux.destCase"
----------------------- equivalence on terms ---------------------------
constEq :: Term -> Term -> Bool
constEq t1 t2 = case (t1,t2) of
(Const m x, Const n y) -> n == m && typEq (typ x) (typ y)
_ -> False
simTerms :: Term -> Term -> Bool
simTerms t1 t2 = case (t1, t2) of
(IsaSign.Const x w, IsaSign.Const y z) ->
x == y && (if (take 6 (new x) == "mbind_" ||
take 7 (new x) == "return_")
then (typ w == noTypeT || typ z == noTypeT ||
typSim (typ w) (typ z))
else typSim (typ w) (typ z))
(IsaSign.Free _, IsaSign.Free _) -> True
(IsaSign.Abs _ _ c, IsaSign.Abs _ _ d) -> c == d
(If _ _ _ c, If _ _ _ d) -> c == d
(Case _ _, Case _ _) -> True
(Let _ _, Let _ _) -> True
(IsaEq _ _, IsaEq _ _) -> True
(Tuplex _ _, Tuplex _ _) -> True
_ -> False
-------------------- replacement functions ----------------------------
{- in term t, replaces variable f for variables in ls -}
renVars :: Term -> [Term] -> Term -> Term
renVars f ls t = case t of
IsaSign.Free _ -> if elem t ls then f else t
IsaSign.Abs v x c -> IsaSign.Abs v (renVars f ls x) c
IsaSign.App x y c -> termSAppl c (renVars f ls x) (renVars f ls y)
IsaSign.If x y z c ->
IsaSign.If (renVars f ls x) (renVars f ls y) (renVars f ls z) c
IsaSign.Case x ys ->
IsaSign.Case (renVars f ls x) [(a,renVars f ls b) | (a,b) <- ys]
IsaSign.Let xs y ->
IsaSign.Let [(a,renVars f ls b) | (a,b) <- xs] (renVars f ls y)
IsaSign.IsaEq x y -> IsaSign.IsaEq (renVars f ls x) (renVars f ls y)
IsaSign.Tuplex xs c -> IsaSign.Tuplex (map (renVars f ls) xs) c
_ -> t
renFuns :: (Term -> Maybe Term) -> Term -> Term
renFuns f t = case t of
IsaSign.Abs v x c -> IsaSign.Abs v (renFuns f x) c
IsaSign.App x y c -> maybe (termSAppl c (renFuns f x) (renFuns f y)) id
$ f t
IsaSign.If x y z c ->
IsaSign.If (renFuns f x) (renFuns f y) (renFuns f z) c
IsaSign.Case x ys ->
IsaSign.Case (renFuns f x) [(a,renFuns f b) | (a,b) <- ys]
IsaSign.Let xs y ->
IsaSign.Let [(a,renFuns f b) | (a,b) <- xs] (renFuns f y)
IsaSign.IsaEq x y -> IsaSign.IsaEq (renFuns f x) (renFuns f y)
IsaSign.Tuplex xs c -> IsaSign.Tuplex (map (renFuns f) xs) c
_ -> t
---------------------- SENTENCES ----------------------------------------
--------------------- getting info from sentences -----------------------
newConstTab :: Continuity -> [Named IsaSign.Sentence] -> ConstTab
newConstTab c ls = if isCont c then Map.empty else
Map.fromList [(mkVName $ extAxName x, extAxType x) | x <- ls]
extAxName :: Named Sentence -> String
extAxName s = senAttr s
extAxType :: Named Sentence -> Typ
extAxType s = case (extFunTerm s) of
Const _ t | isAxiom s -> typ t
_ -> noTypeT
{-
extAxType :: Named Sentence -> Typ
extAxType s = case sentence s of
ConstDef (IsaEq (Const _ t) _) | isAxiom s -> (typ t)
RecDef _ ((App (App _ (App (Const _ t) _ _) _) _ _ : _) : _)
| isAxiom s -> (typ t)
_ -> noTypeT
-}
extFunTerm :: Named Sentence -> Term
extFunTerm s = case sentence s of
ConstDef (IsaEq t _) -> fst $ extTBody t
RecDef _ _ _ (App (App _ x _) _ _ : _) -> fst $ extTBody x
_ -> error "Hs2HOLCFaux.extFunTerm"
extLeftH :: Named Sentence -> Term
extLeftH s = case sentence s of
ConstDef (IsaEq t _) -> t
_ -> error "Hs2HOLCFaux.extLeftH"
extRightH :: Named Sentence -> Term
extRightH s = case sentence s of
ConstDef (IsaEq _ t) -> t
_ -> error "Hs2HOLCFaux.extRightH"
{- left comp is def name, right comp are constants in the def -}
sentAna :: Named Sentence -> (Term, [Term])
sentAna s = case sentence s of
ConstDef (IsaEq l r) | isAxiom s -> (l, constFilter r)
_ -> error "Hs2HOLCFaux.sentAna"
-------------- checking for mutually recursive function defs ----------
getDepSent :: [[Named Sentence]] -> [[Named Sentence]]
getDepSent ls = abGetDep sentDepOn ls
getExpRole :: Named Sentence -> ExpRole
getExpRole n = case (extFunTerm n) of
Const _ x -> case kon x of
TMet -> InstDef
_ -> FunDef
_ -> error "Hs2HOLCFaux, getExpRole"
depOn :: (a -> b -> Bool) -> (c -> a) -> (c -> [b]) -> c -> c -> Bool
depOn f g h x y = any (f (g x)) (h y)
sentDepOn :: Named Sentence -> Named Sentence -> Bool
sentDepOn x y = case getExpRole x of
InstDef ->
depOn (\ u v -> simTerms u v
&& typEq (typ $ termType u) (typ $ termType v))
(fst . sentAna) (snd . sentAna) x y
FunDef ->
depOn (\ u v -> simTerms u v)
(fst . sentAna) (snd . sentAna) x y
------------------- adding fixpoints ------------------------------------
fixMRec :: Continuity -> [[Named Sentence]] -> [Named Sentence]
fixMRec c ls = let xs = getDepSent ls
in addFixPoints c xs
addFixPoints :: Continuity -> [[Named Sentence]] -> [Named Sentence]
addFixPoints c xs = concatMap (fixPoint c) xs
fixPoint :: Continuity -> [Named Sentence] -> [Named Sentence]
fixPoint c xs = case xs of
[a] -> if sentDepOn a a then [mapNamed ( \ s -> case s of
ConstDef (IsaEq lh rh) -> case c of
IsCont _ -> RecDef (Just fixrecS) (mkVName . senAttr $ a)
Nothing [holEq lh rh]
NotCont -> RecDef Nothing (mkVName . senAttr $ a)
Nothing (concat [destCaseS c lh rh])
_ -> error "Hs2HOLCFaux.fixPoint") a]
else xs
_ : _ -> case c of
IsCont _ -> let
jn = joinNames (map extAxName xs) -- name is ininfluential here
ys = map (\ x -> [holEq (extLeftH x) $ extRightH x]) xs
ps = [makeNamed jn $ RecDef (Just fixrecS) (mkVName jn)
Nothing (concat ys)]
in ps
NotCont -> let
jj = joinNames (map extAxName xs)
jn = mkVName jj
jt1 = headTailsType (map extAxType xs)
(jta, jts) = headTailsMT jt1
jt = mkFunType jta (typTuple NotCont jts)
jl = Const jn $ hideNN jt
n = length xs
rs = map extRightH xs
ls = map extFunTerm xs
yys = map (\ x -> destCase x (\ _ -> jn)) rs
yyys = reassemble yys
zs = map (\ (p,ts) -> (p, Tuplex
(map (renFuns (newFCons (Const jn noType) ls)) ts)
NotCont)) $ Map.toList yyys
os = map (\ (x,m) -> mkNewDef x jj n m jt1) $ number xs
ps = makeNamed jj (makeRecDef jj jl zs) : os
in ps
[] -> []
mkNewDef :: Named Sentence -> String ->
Int -> Int -> [(Typ,Typ)] -> Named Sentence
mkNewDef s z x y t = let -- x is the max
a = NotCont
zy = (uncurry mkFunType) (t!!(y-1))
in mapNamed ( \ sen -> case sen of
ConstDef (IsaEq lh rh) -> case (lh, extFBody rh) of
(Const nam _, (_, w : ws)) ->
ConstDef $ IsaEq (Const nam $ hideNN zy) $
termMAbs a (w:ws) $ termMAppl a (tupleSelector x y
(termSAppl a (Const (mkVName z) noType) w) a) ws
_ -> error "Hs2HOLCFaux.mkNewDef1"
_ -> error "Hs2HOLCFaux.mkNewDef2") s
makeRecDef :: String -> Term -> [(Term,Term)] -> Sentence
makeRecDef n t ls =
RecDef Nothing (mkVName n)
Nothing (concat [map (\ (a, b) -> holEq (App t a NotCont) b) ls])
reassemble :: [[(Term,Term)]] -> Map.Map Term [Term]
reassemble ls = foldr
(\ (ft, sd) ms ->
Map.insert ft (sd : Map.findWithDefault [] ft ms) ms)
Map.empty (concat ls)
newFCons :: Term -> [Term] -> Term -> Maybe Term
newFCons t ls k = case k of
App n w NotCont -> case elPos ls n of
Nothing -> Nothing
Just i ->
Just $ tupleSelector (length ls) i (IsaSign.App t w NotCont) NotCont
_ -> Nothing
-------------------------- TYPES -----------------------------------------
------------------------ tuples, lifting ---------------------------------
typTuple :: Continuity -> [Typ] -> Typ
typTuple c ts = case ts of
[] -> noTypeT
[a] -> a
a : as ->
(if isCont c then mkContProduct else prodType) a (typTuple c as)
-------------------- function types -----------------------------------
headTailsType :: [Typ] -> [(Typ, Typ)]
headTailsType ls = case chkTHead ls of
False -> error "Hs2HOLCFaux.headTailsType"
True -> map splitFunT ls
splitFunT :: Typ -> (Typ, Typ)
splitFunT x = case x of
IsaSign.Type "=>" _ [i, b] -> (i,b)
_ -> error "Hs2HOLCF, headTail"
-- checks that all types in the list are equivalent in the first argument
-- and that all variables occur in that argument
chkTHead :: [IsaType] -> Bool
chkTHead ls = case ls of
IsaSign.Type "=>" _ [x,n] : IsaSign.Type "=>" s [y,m] : ns ->
if typEq x y && mkTVarMap id x == mkTVarMap id n then
chkTHead (IsaSign.Type "=>" s [y, m] : ns) else False
[IsaSign.Type "=>" _ [x,n]] -> if mkTVarMap id x == mkTVarMap id n
then True else False
_ -> False
---------------------- equivalence of types modulo variables name ------
typSim :: Typ -> Typ -> Bool
typSim t1 t2 = case (t1, t2) of
(IsaSign.Type _ _ ls1, IsaSign.Type _ _ ls2) ->
typeId t1 == typeId t2 && typLSim ls1 ls2
(TFree _ _, TFree _ _) -> True
_ -> False
typLSim :: [Typ] -> [Typ] -> Bool
typLSim ls1 ls2 = case (ls1, ls2) of
([], []) -> True
(a : as, b : bs) -> typSim a b && typLSim as bs
_ -> False
typEq :: Typ -> Typ -> Bool --make some distinction for case noType?
typEq t1 t2 = t1 == noTypeT || t2 == noTypeT || case (t1, t2) of
(IsaSign.Type _ _ ls1, IsaSign.Type _ _ ls2) ->
typeId t1 == typeId t2
&& typeSort t1 == typeSort t2 && typLEq ls1 ls2
(TFree _ _, TFree _ _) -> typeSort t1 == typeSort t2
_ -> False
typLEq :: [Typ] -> [Typ] -> Bool
typLEq ls1 ls2 = case (ls1, ls2) of
([], []) -> True
(a : as, b : bs) -> typEq a b && typLEq as bs
_ -> False
----------------------- type renaming -----------------------------------
applyTyRen :: Int -> Typ -> Typ
applyTyRen n t = case t of
TFree x s -> TFree (x ++ "XX" ++ show n) s
TVar _ _ -> t
IsaSign.Type a b cs -> IsaSign.Type a b $ map (applyTyRen n) cs
------------------------- type var maps ---------------------------------
headTailsMT :: [(Typ,Typ)] -> (Typ, [Typ])
headTailsMT ls = let
ks = [(mkTVarMap (applyTyRen 0) i, (i, b)) | (i, b) <- ls]
in case ks of
[] -> error "Hs2HOLCFaux, headTailsType"
(f,(x,_)):_ -> let
zs = [(renMap f g, y) | (g,(_,y)) <- ks]
zz = [applyTVM h y | (h, y) <- zs]
w = applyTyRen 0 x
in (w, zz)
-- !!!!!!!!!!!!
renMap :: Map.Map Typ Typ -> Map.Map Typ Typ -> Map.Map Typ Typ
renMap f g = if Map.size f == Map.size g then
Map.fromList [(fst $ Map.elemAt n g, snd $ Map.elemAt n f)
| n <- [0..((Map.size f) - 1)]]
else error "HsHOLCFaux, renMap"
-- !!!!!!!!!!!!
mkTVarMap :: (Typ -> Typ) -> Typ -> Map.Map Typ Typ
mkTVarMap f t = case t of
Type _ _ xs -> Map.unions [mkTVarMap f y | y <- xs]
_ -> Map.singleton t (f t)
applyTVM :: Map.Map Typ Typ -> Typ -> Typ
applyTVM f t = case t of
IsaSign.Type n s vs -> IsaSign.Type n s (map (applyTVM f) vs)
_ -> maybe t id $ Map.lookup t f
------------------------ replacement functions -------------------------
-- constrains variables in t with sort constraints in cs
constrVarClass :: IsaType -> [(IsaType,Sort)] -> IsaType
constrVarClass t cs = typeVarsRep addSort [(typeId x,y) | (x,y) <- cs] t
addSort :: [(TName,Sort)] -> TName -> Sort -> Maybe Typ
addSort cs n s = do
as <- Map.lookup n (Map.fromList cs)
return $ TFree n $ remove_duplicates $ s ++ as
-- replaces in t variables of class c with nt
repVarClass :: IsaType -> IsaClass -> IsaType -> IsaType
repVarClass t c nt = typeVarsRep repVC (c,nt) t
repVC :: (IsaClass, IsaType) -> TName -> IsaSort -> Maybe IsaType
repVC (c, t) _ s = if elem c s then return t else Nothing
typeVarsRep :: (a -> TName -> Sort -> Maybe IsaType) -> a ->
IsaType -> IsaType
typeVarsRep f ls t = case t of
IsaSign.Type n s vs -> IsaSign.Type n s (map (typeVarsRep f ls) vs)
IsaSign.TFree n s -> maybe t id $ f ls n s
_ -> t
-- replace type var in t with type x; used in instantiation; assumed
-- that t has just one variable
replaceTyVar :: IsaType -> IsaType -> IsaType
replaceTyVar x t = if x == noTypeT then t else case t of
IsaSign.Type n s vs -> IsaSign.Type n s (map (replaceTyVar x) vs)
IsaSign.TFree _ _ -> x
IsaSign.TVar _ _ -> x