HasCASL2THF0.hs revision 8f115733923ad2b5f4ce3bf7f4206007cea2070d
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Description : Comorphism from HasCASL to THF
Copyright : (c) A. Tsogias, DFKI Bremen 2011
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Alexis.Tsogias@dfki.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The embedding comorphism from HasCASL to THF0.
-}
module Comorphisms.HasCASL2THF0 where
import Logic.Logic as Logic
import Logic.Comorphism
import Common.ProofTree
import Common.Result
import Common.Id
import Common.AS_Annotation
import Common.Utils (number)
import Common.DocUtils
import HasCASL.Logic_HasCASL
import HasCASL.Sublogic
import HasCASL.Le as HCLe
import HasCASL.As as HCAs
import HasCASL.AsUtils
import HasCASL.Builtin
import THF.As as THFAs
import THF.Logic_THF
import THF.Cons as THFCons
import THF.Sign as THFSign
import THF.Translate
import THF.HasCASL2THF0Buildins
import qualified THF.Sublogic as SL
import Control.Monad
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.List as List
import Data.Char (toLower)
-- Question: are the remaining symbol variants translatable?
-- | The identity of the comorphism
data HasCASL2THF0 = HasCASL2THF0 deriving Show
instance Language HasCASL2THF0
instance Comorphism HasCASL2THF0
HasCASL Sublogic
BasicSpec Sentence SymbItems SymbMapItems
Env Morphism Symbol RawSymbol ()
THF SL.THFSl
BasicSpecTHF SentenceTHF () ()
SignTHF MorphismTHF SymbolTHF () ProofTree where
sourceLogic HasCASL2THF0 = HasCASL
sourceSublogic HasCASL2THF0 = reqSubLogicForTHF0 -- topLogic
targetLogic HasCASL2THF0 = THF
mapSublogic HasCASL2THF0 _ = Just SL.THF0
map_theory HasCASL2THF0 = transTheory
map_symbol HasCASL2THF0 = transSymbol
-- isInclusionComorphism HasCASL2THF0 = True
has_model_expansion HasCASL2THF0 = True
reqSubLogicForTHF0 :: Sublogic
reqSubLogicForTHF0 = Sublogic
{ has_sub = False
, has_part = False
, has_eq = True
, has_pred = True
, type_classes = NoClasses
, has_polymorphism = False
, has_type_constructors = False
, which_logic = HOL }
-- Translation of a Theory
transTheory :: (Env, [Named Sentence]) -> Result (SignTHF, [Named SentenceTHF])
transTheory (env, hcnsl) = do
(typs, icm) <- transTypeMap $ HCLe.typeMap env
cons <- transAssumps (HCLe.assumps env) icm
(nsl, ids) <- foldM (fNSen icm) ([], Set.empty) hcnsl
let ax = preDefAxioms ids ++ reverse nsl
aCons = Map.union cons (preDefHCAssumps ids)
syms <- mkSymbolMap typs aCons
let sig = THFSign.emptySign { types = typs
, consts = aCons
, symbols = syms }
return (sig , ax)
where
fNSen :: IdConstantMap -> ([Named SentenceTHF], IdSet)
-> Named Sentence -> Result ([Named SentenceTHF], IdSet)
fNSen icm (nsl, ids) hcns = do
(ns, nids) <- transNamedSentence (Just icm) ids env hcns
return (ns : nsl, nids)
-- Translation methods for the components a signature
where
-> Result (THFSign.TypeMap, Map.Map Id Constant)
trans (ttm, icm) (i, ti) = fmap
(\ c -> (Map.insert c (transTypeInfo ti c) ttm, Map.insert i c icm))
(transTypeId i)
transTypeInfo ti c = THFSign.TypeInfo
{ THFSign.typeId = c
, THFSign.typeName = mkTypesName c
, THFSign.typeKind = transRawKind $ HCLe.typeKind ti
, THFSign.typeAnno = THFAs.Null }
transRawKind :: HCAs.RawKind -> THFCons.Kind
transRawKind rk = case rk of
ClassKind () -> Kind
FunKind _ k1 k2 _ -> case k1 of
FunKind {} -> MapKind (ParKind $ transRawKind k1)
(transRawKind k2)
_ -> MapKind (transRawKind k1)
(transRawKind k2)
transAssumps am icm = foldM insertConsts Map.empty (Map.toList am)
where
insertConsts :: THFSign.ConstMap -> (Id, Set.Set OpInfo)
-> Result THFSign.ConstMap
insertConsts m (name, ops) = case Set.toList ops of
[OpInfo ts _ _] -> do
ty <- transOp ts
c <- transAssumpId name
let ci = THFSign.ConstInfo
{ THFSign.constId = c
, THFSign.constName = mkConstsName c
, THFSign.constType = ty
, THFSign.constAnno = THFAs.Null }
return $ Map.insert c ci m
infos -> foldM (\ m' (OpInfo ts _ _, i) -> do
ty <- transOp ts
c <- transAssumpsId name i
let ci = THFSign.ConstInfo
{ THFSign.constId = c
, THFSign.constName = mkConstsName c
, THFSign.constType = ty
, THFSign.constAnno = THFAs.Null }
return $ Map.insert c ci m'
) m (number infos)
transOp :: TypeScheme -> Result THFCons.Type
transOp (TypeScheme _ op _) = transType icm op
-- a mapping between ids of hascasl types and their representation in THF
type IdConstantMap = Map.Map Id THFAs.Constant
genIdConstantMap :: Env -> Result IdConstantMap
genIdConstantMap e = foldM (\ icm (i, _) -> do
c <- transTypeId i
return $ Map.insert i c icm)
transType :: IdConstantMap -> HCAs.Type -> Result THFCons.Type
transType icm hct = case getTypeAppl hct of
(TypeName tid _ n, tys)
| null tys && tid == unitTypeId -> return OType
| List.length tys == 1 && tid == lazyTypeId ->
if isUnitType $ head tys
then return OType
else fatal_error "THF0 does not support partiality." nullRange
| List.length tys == 2 -> if isArrow tid then do
[ts1, ts2] <- mapM (transType icm) tys
case ts1 of
THFCons.MapType _ _ ->
return $ THFCons.MapType (THFCons.ParType ts1) ts2
_ -> return (THFCons.MapType ts1 ts2)
else fatal_error ("Application of Types in Constants is not " ++
"possible in THF0: " ++ show tid) (getRange tid)
| n == 0 && null tys ->
maybe (fatal_error ("unknown Type" ++ show tid) nullRange)
(return . THFCons.CType) (Map.lookup tid icm)
| n < 0 && null tys -> fmap THFCons.VType (transVarId tid)
t -> fatal_error ("transType: Not a translatable type: " ++ show t)
(getRange hct)
isUnitType :: HCAs.Type -> Bool
isUnitType t = case t of
TypeName i _ _ -> myEqId i unitTypeId
_ -> False
{- method used to add a type to the tail of a type
it is used e.g. to transform Types of predicates into function types
by adding the boolean-Type OType to the tail.
Example:
insLast OType (OType > A > IType) --> OType > A > IType > OType -}
insLast it t = case t of
MapType t1 t2 -> MapType t1 (insLast it t2)
t1 -> MapType t1 it
mkSymbolMap tm cm = foldM ins (Map.map typeInfoToSymbol tm) (Map.toList cm)
where
-> Result THFSign.SymbolMap
ins sm (c, ci) = if Map.member c sm then
fatal_error ("Two symbols with the same name detected: " ++
show (pretty c)) nullRange
else return $ Map.insert c (constInfoToSymbol ci) sm
typeInfoToSymbol :: THFSign.TypeInfo -> THFCons.SymbolTHF
typeInfoToSymbol ti = THFCons.Symbol
{ THFCons.symId = THFSign.typeId ti
, THFCons.symName = THFSign.typeName ti
constInfoToSymbol :: THFSign.ConstInfo -> THFCons.SymbolTHF
constInfoToSymbol ci = THFCons.Symbol
{ THFCons.symId = THFSign.constId ci
, THFCons.symName = THFSign.constName ci
-- Transation of Symbols
{- Not supported symbols:
ClassAsItemType RawKind
SuperClassSymbol Kind
SuperTypeSymbol Id
TypeKindInstance Kind
TypeAliasSymbol Type
-}
transSymbol :: Env -> Symbol -> Set.Set SymbolTHF
transSymbol sig1 sym1 = case HCLe.symType sym1 of
TypeAsItemType rk ->
case maybeResult (transTypeId $ HCLe.symName sym1) of
Nothing -> Set.empty
Just c -> Set.singleton THFCons.Symbol
{ THFCons.symId = c
, THFCons.symName = mkTypesName c
, THFCons.symType = ST_Type $ transRawKind rk }
OpAsItemType ts -> tsHelper ts tsOpType
PredAsItemType ts -> tsHelper ts tsPredType
_ -> Set.empty
where
tsOpType :: IdConstantMap -> TypeScheme -> Result THFCons.Type
tsOpType icm (TypeScheme _ t _) = transType icm t
tsPredType :: IdConstantMap -> TypeScheme -> Result THFCons.Type
tsPredType icm (TypeScheme _ t _) = fmap (insLast OType)
(transType icm t)
tsHelper :: TypeScheme -> (IdConstantMap -> TypeScheme
-> Result THFCons.Type) -> Set.Set SymbolTHF
tsHelper ts f = case Map.lookup (HCLe.symName sym1) (assumps sig1) of
Just a
| Set.size a == 1 -> tsHelper2 ts
(transAssumpId $ HCLe.symName sym1) f
| Set.size a >= 2 -> case List.lookup ts (number
(map HCLe.opType (Set.toList a))) of
Nothing -> Set.empty
Just num -> tsHelper2 ts
(transAssumpsId (HCLe.symName sym1) num) f
_ -> tsHelper2 ts (transAssumpId $ HCLe.symName sym1) f
tsHelper2 :: TypeScheme -> Result THFAs.Constant -> (IdConstantMap
-> TypeScheme -> Result THFCons.Type) -> Set.Set SymbolTHF
tsHelper2 t rc f = case maybeResult rc of
Nothing -> Set.empty
Just c -> case maybeResult (genIdConstantMap sig1) of
Nothing -> Set.empty
Just icm -> case maybeResult (f icm t) of
Nothing -> Set.empty
Just tt -> Set.singleton
THFCons.Symbol { THFCons.symId = c
, THFCons.symName = mkConstsName c
, THFCons.symType = ST_Const tt }
-- Translating methods for Sentences
transNamedSentence :: Maybe IdConstantMap -> IdSet -> Env -> Named Sentence
-> Result (Named SentenceTHF, IdSet)
transNamedSentence micm ids sig ns' = do
icm <- maybe (genIdConstantMap sig) return micm
let ns = reName (\ n -> case n of
[] -> n
x : xs -> toLower x : xs) ns'
case sentence ns of
Formula term -> do
(lf, nids) <- transTerm sig icm ids term
return ( ns {sentence =
THFCons.Sentence { senRole = getFormulaRole ns
, senFormula = TF_THF_Logic_Formula lf
, senAnno = Null } }
, nids)
ProgEqSen {} ->
fatal_error "Programm equations are not supported."
(getRange ns)
DatatypeSen _ ->
fatal_error "Data constructors are not allowed in THF0."
(getRange ns)
getFormulaRole :: Named HCLe.Sentence -> FormulaRole
getFormulaRole ns =
if isAxiom ns
then if wasTheorem ns then Theorem else Axiom
else Lemma
transTerm :: Env -> IdConstantMap -> IdSet -> HCAs.Term
-> Result (THFLogicFormula, IdSet)
transTerm e icm ids t = case t of
QuantifiedTerm q gcdl t1 r -> myFmap (TLF_THF_Unitary_Formula .
TUF_THF_Quantified_Formula) (transQuantifiedTerm e icm ids q gcdl t1 r)
LambdaTerm tl p t1 r -> transLamdaTerm e icm ids tl p t1 r
TypedTerm t1 tq ty r -> redTypedTerm t1 tq ty r >>=
transTerm e icm ids
ApplTerm t1 t2 r -> transApplTerm e icm ids t1 t2 r
QualVar (VarDecl i _ _ _) -> fmap (TLF_THF_Unitary_Formula . TUF_THF_Atom
. T0A_Variable) (transVarId i) >>= (\ lf -> return (lf, ids))
QualOp ob pid ts tl ik r -> myFmap (TLF_THF_Unitary_Formula
. TUF_THF_Atom . T0A_Constant) (transQualOp e ids ob pid ts tl ik r)
TupleTerm _ _ ->
fatal_error "Tuples are not allowed in THF0." (getRange t)
TermToken _ ->
fatal_error "Missing translation for term tokens." (getRange t)
AsPattern {} ->
fatal_error "As patterns are not supported in THF0." (getRange t)
LetTerm {} ->
fatal_error "Let terms are not supported in THF0." (getRange t)
CaseTerm {} ->
fatal_error "Case statements are not supported in THF." (getRange t)
_ ->
fatal_error "HasCASL2THF0.transTerm" (getRange t)
redTypedTerm t1 tq1 _ r1 =
if elem tq1 [Inferred, OfType]
then case t1 of
TypedTerm t2 tq2 ty2 r2 -> redTypedTerm t2 tq2 ty2 r2
_ -> return t1
else fatal_error "Typed terms are not supported in THF0." r1
transQualOp :: Env -> IdSet -> OpBrand -> PolyId -> TypeScheme
-> [HCAs.Type] -> InstKind -> Range -> Result (Constant, IdSet)
transQualOp e ids _ (PolyId i _ _) ts _ _ r = do
let nids = if elem i (map fst bList) then Set.insert i ids else ids
case Map.lookup i (assumps e) of
Just s
| Set.size s <= 0 -> fatal_error ("unknown op: " ++ show i) r
| Set.size s == 1 -> transAssumpId i >>= (\ c -> return (c, nids))
| Set.size s >= 2 -> case List.lookup ts (number
(map HCLe.opType (Set.toList s))) of
Nothing -> fatal_error ("unknown op: " ++ show i) r
Just num ->
transAssumpsId i num >>= (\ c -> return (c, nids))
_ -> transAssumpId i >>= (\ c -> return (c, nids))
-> Range -> Result (THFLogicFormula, IdSet)
transApplTerm e icm ids t1 t2 r = do
let at = ApplTerm t1 t2 r
case myGetAppl at of
Nothing -> fatal_error
("unexpected Term Application: " ++ showDoc at "") r
Just (t3, i, tl1)
| elem i [eqId, exEq, andId, orId, eqvId, implId, infixIf, resId] ->
case tl1 of
TupleTerm tl2 _ : [] ->
myFmap (TLF_THF_Binary_Formula . TBF_THF_Binary_Tuple
. TBT_THF_Apply_Formula . reverse)
(foldM fTrmToUf ([], ids) (t3 : tl2))
_ -> fatal_error ("unexpected arguments " ++ show tl1 ++
" for the function " ++ show i) r
| i == whenElse ->
fatal_error ("__when__else__ is not supported yet. " ++
"Please code it out, see: Casl Reference Manula p. 25.") r
| otherwise -> myFmap (TLF_THF_Binary_Formula . TBF_THF_Binary_Tuple
. TBT_THF_Apply_Formula . reverse)
(foldM fTrmToUf ([], ids) (t3 : tl1))
where
fTrmToUf :: ([THFUnitaryFormula], IdSet) -> HCAs.Term
-> Result ([THFUnitaryFormula], IdSet)
fTrmToUf (ufl, oids) t = do
(uf, nids) <- myFmap lfToUf (transTerm e icm oids t)
return (uf : ufl, nids)
{- | decompose an 'ApplTerm' into an application of an operation and a
list of arguments -}
myGetAppl = thrdM reverse . getRevAppl where
thrdM :: (c -> c) -> Maybe (a, b, c) -> Maybe (a, b, c)
thrdM f = fmap ( \ (a, b, c) -> (a, b, f c))
getRevAppl t = case t of
TypedTerm trm q _ _ -> case q of
InType -> Nothing
_ -> getRevAppl trm
QualVar (VarDecl i _ _ _) -> Just (t, i, [])
QualOp _ (PolyId i _ _) _ _ _ _ -> Just (t, i, [])
ApplTerm t1 t2 _ -> thrdM (t2 :) $ getRevAppl t1
_ -> Nothing
transLamdaTerm :: Env -> IdConstantMap -> IdSet -> [HCAs.Term] -> Partiality
-> HCAs.Term -> Range -> Result (THFLogicFormula, IdSet)
transLamdaTerm e icm ids tl _ t _ = do
vl <- mapM trVar tl
(uf, nids) <- myFmap lfToUf (transTerm e icm ids t)
return (TLF_THF_Unitary_Formula $ T0UF_THF_Abstraction vl uf, nids)
where
trVar :: HCAs.Term -> Result THFVariable
trVar t1 = case t1 of
TypedTerm t2 tq ty r -> redTypedTerm t2 tq ty r >>= trVar
QualVar vd -> transVarDecl icm vd
_ -> fatal_error ("Unexpected term: " ++ show t1
++ " Expected variable.") (getRange t1)
transQuantifiedTerm :: Env -> IdConstantMap -> IdSet -> HCAs.Quantifier
-> [HCAs.GenVarDecl] -> HCAs.Term -> Range
-> Result (THFAs.THFQuantifiedFormula, IdSet)
transQuantifiedTerm e icm ids q gcdl t r = case q of
Universal -> tqHelper T0Q_ForAll
Existential -> tqHelper T0Q_Exists
Unique ->
fatal_error "Unique quantifications are not supported yet." r
{- two possible translatione for uniqueness:
1. Ex: x . P(x) /\ Not (Ex : x,y . (P(x) /\ P(y) /\ not (x = y)))
2. Ex: x . (All : y . (P(y) <=> x = y)) -}
where
tqHelper :: THFAs.Quantifier
-> Result (THFAs.THFQuantifiedFormula, IdSet)
tqHelper quant = do
vl <- mapM (transGenVatDecl icm) gcdl
myFmap (T0QF_THF_Quantified_Var quant vl . lfToUf)
(transTerm e icm ids t)
transGenVatDecl :: IdConstantMap -> GenVarDecl
-> Result THFVariable
transGenVatDecl icm gvd = case gvd of
GenVarDecl vd -> transVarDecl icm vd
GenTypeVarDecl (TypeArg _ _ _ _ _ _ r) ->
fatal_error "GenTypeVarDecl not supported" r
transVarDecl :: IdConstantMap -> VarDecl -> Result THFVariable
transVarDecl icm (VarDecl i t _ _) = do
v <- transVarId i
tlt <- transType icm t >>= genTHFTopLevelType
return $ TV_THF_Typed_Variable v tlt
genTHFTopLevelType :: THFCons.Type -> Result THFAs.THFTopLevelType
genTHFTopLevelType t = case t of
TType -> return $ T0TLT_Defined_Type DT_tType
OType -> return $ T0TLT_Defined_Type DT_o
IType -> return $ T0TLT_Defined_Type DT_i
CType c -> return $ T0TLT_Constant c
SType st -> return $ T0TLT_System_Type st
VType v -> return $ T0TLT_Variable v
MapType _ _ -> fmap T0TLT_THF_Binary_Type (genTHFBinaryType t)
ParType t1 -> genTHFTopLevelType t1
ProdType ts -> fmap T0TLT_THF_Binary_Type $ genTuple ts
genTHFBinaryType :: THFCons.Type -> Result THFAs.THFBinaryType
genTHFBinaryType t = case t of
MapType t1 t2 -> do
uf <- genTHFUnitaryType t1
ufr <- mtbt t2
return $ TBT_THF_Mapping_Type (uf : ufr)
ParType t1 -> fmap T0BT_THF_Binary_Type_Par (genTHFBinaryType t1)
_ -> fatal_error ("Unexpected Type: " ++ show t) nullRange
where
mtbt :: THFCons.Type -> Result [THFAs.THFUnitaryType]
mtbt ty = case ty of
MapType ty1 ty2 -> do
uf <- genTHFUnitaryType ty1
ufr <- mtbt ty2
return (uf : ufr)
_ -> genTHFUnitaryType ty >>= (\ uf -> return [uf])
genTHFUnitaryType :: THFCons.Type -> Result THFAs.THFUnitaryType
genTHFUnitaryType t = case t of
TType -> return $ T0UT_Defined_Type DT_tType
OType -> return $ T0UT_Defined_Type DT_o
IType -> return $ T0UT_Defined_Type DT_i
CType c -> return $ T0UT_Constant c
SType st -> return $ T0UT_System_Type st
VType v -> return $ T0UT_Variable v
MapType _ _ -> fmap T0UT_THF_Binary_Type_Par (genTHFBinaryType t)
ParType t1 -> fmap T0UT_THF_Binary_Type_Par (genTHFBinaryType t1)
ProdType ts -> fmap T0UT_THF_Binary_Type_Par (genTuple ts)
genTuple :: [THFCons.Type] -> Result THFAs.THFBinaryType
genTuple ts = case ts of
[] -> fatal_error "Empty product type" nullRange
tp : [] -> genTHFBinaryType tp
_ -> fmap TBT_THF_Xprod_Type $ mapR genTHFUnitaryType ts
-- THFLogicFormula to THFUnitaryFormula
lfToUf :: THFLogicFormula -> THFUnitaryFormula
lfToUf lf = case lf of
TLF_THF_Unitary_Formula uf -> uf
_ -> TUF_THF_Logic_Formula_Par lf
-- Helper
type IdSet = Set.Set Id
myFmap :: (a -> b) -> Result (a, IdSet) -> Result (b, IdSet)
myFmap fun res = do
(something, ids) <- res
return (fun something, ids)