ExtModal2CASL.hs revision a62775006ae39677af366c0f7b599924243cc65b
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Copyright : (c) Christian Maeder, DFKI 2012
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable (MPTC-FD)
-}
module Comorphisms.ExtModal2CASL where
import Logic.Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.DocUtils
import Common.Id
import Common.ProofTree
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.MapSet as MapSet
import qualified Data.Set as Set
import Data.Function
import Data.Maybe
-- CASL
import CASL.AS_Basic_CASL
import CASL.Fold
import CASL.Logic_CASL
import CASL.Morphism
import CASL.Overload
import CASL.Quantification
import CASL.Sign
import CASL.Sublogic as SL
import CASL.World
-- ExtModalCASL
import ExtModal.Logic_ExtModal
import ExtModal.AS_ExtModal
import ExtModal.ExtModalSign
import ExtModal.Sublogic
data ExtModal2CASL = ExtModal2CASL deriving (Show)
instance Language ExtModal2CASL
instance Comorphism ExtModal2CASL
ExtModal Sublogic EM_BASIC_SPEC ExtModalFORMULA SYMB_ITEMS
SYMB_MAP_ITEMS ExtModalSign ExtModalMorph
Symbol RawSymbol ()
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree where
sourceLogic ExtModal2CASL = ExtModal
sourceSublogic ExtModal2CASL = foleml
targetLogic ExtModal2CASL = CASL
mapSublogic ExtModal2CASL _ = Just SL.caslTop
map_theory ExtModal2CASL (sig, sens) = case transSig sig of
mme -> return (mme, map (mapNamed $ transTop sig mme) sens)
{-
map_morphism ExtModal2CASL = return . mapMor
map_sentence ExtModal2CASL sig = return . transSen sig
map_symbol ExtModal2CASL _ = Set.singleton . mapSym
-}
has_model_expansion ExtModal2CASL = True
is_weakly_amalgamable ExtModal2CASL = True
nomName :: Id -> Id
nomName t = Id [genToken "N"] [t] $ rangeOfId t
nomOpType :: OpType
nomOpType = mkTotOpType [] world
-- | add world arguments to flexible ops and preds; and add relations
transSig :: ExtModalSign -> CASLSign
transSig sign = let
s1 = embedSign () sign
extInf = extendedInfo sign
flexibleOps = flexOps extInf
flexiblePreds = flexPreds extInf
flexOps' = addWorldOp world addPlace flexibleOps
flexPreds' = addWorldPred world addPlace flexiblePreds
rigOps' = diffOpMapSet (opMap sign) flexibleOps
rigPreds' = diffMapSet (predMap sign) flexiblePreds
noms = nominals extInf
noNomsPreds = Set.fold (`MapSet.delete` nomPType) rigPreds' noms
termMs = termMods extInf
timeMs = timeMods extInf
rels = Set.fold (\ m ->
insertModPred world (Set.member m timeMs) (Set.member m termMs) m)
MapSet.empty $ modalities extInf
nomOps = Set.fold (\ n -> addOpTo (nomName n) nomOpType) rigOps' noms
in s1
{ sortRel = Rel.insertKey world $ sortRel sign
, opMap = addOpMapSet flexOps' nomOps
, assocOps = diffOpMapSet (assocOps sign) flexibleOps
, predMap = addMapSet rels $ addMapSet flexPreds' noNomsPreds
}
data Args = Args
{ currentW :: TERM ()
, nextW, freeC :: Int -- world variables
, boundNoms :: [(Id, TERM ())]
, modSig :: ExtModalSign
}
transTop :: ExtModalSign -> CASLSign -> FORMULA EM_FORMULA -> FORMULA ()
transTop msig csig = let
vd = mkVarDecl (genNumVar "w" 1) world
vt = toQualVar vd
in stripQuant csig . mkForall [vd]
. transMF (Args vt 1 1 [] msig)
getTermOfNom :: Args -> Id -> TERM ()
getTermOfNom as i = fromMaybe (mkNomAppl i) . lookup i $ boundNoms as
-- TODO: check that constructors are not flexible!
mkNomAppl :: Id -> TERM ()
mkNomAppl pn = mkAppl (mkQualOp (nomName pn) $ toOP_TYPE nomOpType) []
transRecord :: Args -> Record EM_FORMULA (FORMULA ()) (TERM ())
transRecord as = let
extInf = extendedInfo $ modSig as
currW = currentW as
in (mapRecord $ const ())
{ foldPredication = \ _ ps args r -> case ps of
Qual_pred_name pn pTy@(Pred_type srts q) p
| MapSet.member pn (toPredType pTy) $ flexPreds extInf
-> Predication
(Qual_pred_name (addPlace pn) (Pred_type (world : srts) q) p)
(currW : args) r
| null srts && Set.member pn (nominals extInf)
-> mkStEq currW $ getTermOfNom as pn
_ -> Predication ps args r
, foldExtFORMULA = \ _ f -> transEMF as f
, foldApplication = \ _ os args r -> case os of
Qual_op_name opn oTy@(Op_type ok srts res q) p
| MapSet.member opn (toOpType oTy) $ flexOps extInf
-> Application
(Qual_op_name (addPlace opn) (Op_type ok (world : srts) res q) p)
(currW : args) r
_ -> Application os args r
}
transMF :: Args -> FORMULA EM_FORMULA -> FORMULA ()
transMF = foldFormula . transRecord
disjointVars :: [VAR_DECL] -> [FORMULA ()]
disjointVars vs = case vs of
a : r@(b : _) -> mkNeg (on mkStEq toQualVar a b) : disjointVars r
_ -> []
transEMF :: Args -> EM_FORMULA -> FORMULA ()
transEMF as emf = case emf of
PrefixForm pf f r -> let
fW = freeC as
in case pf of
BoxOrDiamond bOp m gEq i -> let
ex = bOp == Diamond
l = [fW + 1 .. fW + i]
vds = map (\ n -> mkVarDecl (genNumVar "w" n) world) l
nAs = as { freeC = fW + i }
tf n = transMF nAs { currentW = mkVarTerm (genNumVar "w" n) world } f
tM n = transMod nAs { nextW = n } m
conjF = conjunct $ map tM l ++ map tf l ++ disjointVars vds
diam = BoxOrDiamond Diamond m True
tr b = transEMF as $ PrefixForm (BoxOrDiamond b m gEq i) f r
in if gEq && i > 0 && (i == 1 || ex) then case bOp of
Diamond -> mkExist vds conjF
Box -> mkForall vds conjF
EBox -> conjunct [mkExist vds conjF, mkForall vds conjF]
else if i <= 0 && ex && gEq then trueForm
else if bOp == EBox then conjunct $ map tr [Diamond, Box]
else if ex -- lEq
then transMF as . mkNeg . ExtFORMULA $ PrefixForm
(diam $ i + 1) f r
else if gEq -- Box
then transMF as . mkNeg . ExtFORMULA $ PrefixForm
(diam i) (mkNeg f) r
else transMF as . ExtFORMULA $ PrefixForm
(diam $ i + 1) (mkNeg f) r
Hybrid at i -> let ni = simpleIdToId i in
if at then transMF as { currentW = getTermOfNom as ni } f else let
vi = mkVarDecl (genNumVar "i" $ fW + 1) world
ti = toQualVar vi
in mkExist [vi] $ conjunct
[ mkStEq ti $ currentW as
, transMF as { boundNoms = (ni, ti) : boundNoms as
, currentW = ti
, freeC = fW + 1 } f ]
_ -> transMF as f
UntilSince _isUntil f1 f2 r -> conjunctRange [transMF as f1, transMF as f2] r
ModForm _ -> trueForm
transMod :: Args -> MODALITY -> FORMULA ()
transMod as md = let
t1 = currentW as
t2 = mkVarTerm (genNumVar "w" $ nextW as) world
vts = [t1, t2]
msig = modSig as
extInf = extendedInfo msig
timeMs = timeMods extInf
in case md of
SimpleMod i -> let ri = simpleIdToId i in mkPredication
(mkQualPred (relOfMod (Set.member ri timeMs) False ri)
. toPRED_TYPE $ modPredType world False ri) vts
TermMod t -> case optTermSort t of
Just srt -> case keepMinimals msig id . Set.toList
. Set.intersection (termMods extInf) . Set.insert srt
$ supersortsOf srt msig of
[] -> error $ "transMod1: " ++ showDoc t ""
st : _ -> mkPredication
(mkQualPred (relOfMod (Set.member st timeMs) True st)
. toPRED_TYPE $ modPredType world True st)
$ foldTerm (transRecord as) t : vts
_ -> error $ "transMod2: " ++ showDoc t ""
Guard f -> conjunct [mkExEq t1 t2, transMF as f]
ModOp mOp m1 m2 -> case mOp of
Composition -> let
nW = freeC as + 1
nAs = as { freeC = nW }
vd = mkVarDecl (genNumVar "w" nW) world
in mkExist [vd] $ conjunct
[ transMod nAs { nextW = nW } m1
, transMod nAs { currentW = toQualVar vd } m2 ]
Intersection -> conjunct [transMod as m1, transMod as m2] -- parallel?
Union -> disjunct [transMod as m1, transMod as m2]
OrElse -> disjunct . transOrElse [] as $ flatOrElse md
TransClos m -> transMod as m -- ignore transitivity for now
flatOrElse :: MODALITY -> [MODALITY]
flatOrElse md = case md of
ModOp OrElse m1 m2 -> flatOrElse m1 ++ flatOrElse m2
_ -> [md]
transOrElse :: [FORMULA EM_FORMULA] -> Args -> [MODALITY] -> [FORMULA ()]
transOrElse nFs as ms = case ms of
[] -> []
md : r -> case md of
Guard f -> transMod as (Guard . conjunct $ f : nFs)
: transOrElse (mkNeg f : nFs) as r
_ -> transMod as md : transOrElse nFs as r