DL2CASL_DL.hs revision d0c66a832d7b556e20ea4af4852cdc27a5463d51
{- |
Module : $Header$
Description : Comorphism from DL to CASL_DL
Copyright : (c) Dominik Luecke and Uni Bremen 2007
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : experimental
Portability : non-portable (imports Logic.Logic)
The translating comorphism from DL to CASL_DL basically this is an
identity comorphism from SROIQ(D) to SROIQ(D)
-}
module Comorphisms.DL2CASL_DL
(
DL2CASL_DL(..)
)
where
import Logic.Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Result
import Common.Id
import qualified Data.Set as Set
import qualified Data.Map as Map
-- DL
import DL.Logic_DL as LDL
import DL.AS as ADL
import qualified DL.Sign as SDL
--CASL_DL = codomain
import CASL_DL.Logic_CASL_DL
import CASL_DL.AS_CASL_DL
import CASL_DL.StatAna -- DLSign
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL_DL.Sign
import CASL_DL.Sublogics
import CASL.Morphism
import qualified CASL_DL.PredefinedSign as PS
data DL2CASL_DL = DL2CASL_DL deriving (Show)
instance Language DL2CASL_DL
thing :: SORT
thing = PS.topSort
dataD :: SORT
dataD = PS.topSortD
instance Comorphism
DL2CASL_DL -- comorphism
DL -- lid domain
() -- sublogics domain
DLBasic -- Basic spec domain
DLBasicItem -- sentence domain
() -- symbol items domain
() -- symbol map items domain
SDL.Sign -- signature domain
SDL.DLMorphism -- morphism domain
SDL.DLSymbol -- symbol domain
SDL.RawDLSymbol -- rawsymbol domain
() -- proof tree codomain
CASL_DL -- lid codomain
CASL_DL_SL -- sublogics codomain
DL_BASIC_SPEC -- Basic spec codomain
DLFORMULA -- sentence codomain
SYMB_ITEMS -- symbol items codomain
SYMB_MAP_ITEMS -- symbol map items codomain
DLSign -- signature codomain
DLMor -- morphism codomain
Symbol -- symbol codomain
RawSymbol -- rawsymbol codomain
Q_ProofTree -- proof tree domain
where
sourceLogic DL2CASL_DL = DL
sourceSublogic DL2CASL_DL = ()
targetLogic DL2CASL_DL = CASL_DL
mapSublogic DL2CASL_DL _ = Just SROIQ
map_theory DL2CASL_DL = map_DL_theory
map_morphism DL2CASL_DL = mapMorphism
isInclusionComorphism DL2CASL_DL = True
mapMorphism :: SDL.DLMorphism -> Result DLMor
mapMorphism phi = do
ssign <- mapt_sign $ SDL.msource phi
tsign <- mapt_sign $ SDL.mtarget phi
let cm = Map.mapKeys (\x -> (x, PredType [thing])) $ SDL.c_map phi
om = Map.mapKeys (\x -> (x, PredType [thing,thing])) $
dm = Map.mapKeys (\x -> (x, PredType [thing,dataD])) $
im = Map.map (\x -> (x, Total)) $
Map.mapKeys (\x -> (x, OpType Total [] (thing))) $
return Morphism {
msource = ssign,
mtarget = tsign,
sort_map = Map.empty,
fun_map = im,
pred_map = pm,
extended_map = ()
}
map_DL_theory :: (SDL.Sign, [Named DLBasicItem]) ->
Result (DLSign, [Named DLFORMULA])
map_DL_theory (sig, n_sens) =
do
osig <- mapt_sign sig
oforms <- mapM (map_named_basic_item sig) n_sens
return (osig, concat $ oforms)
isObjProp :: SDL.Sign -> Id -> Bool
isObjProp inSig pName =
let
in
pName `Set.member` inObjProps
isDataProp :: SDL.Sign -> Id -> Bool
isDataProp inSig pName =
let
in
pName `Set.member` inDataProps
-- Generation of a CASL_DL Signature
mapt_sign :: SDL.Sign -> Result DLSign
mapt_sign inSig =
let
inClasses = SDL.classes inSig
oClasses = map (\x -> (x,
[PredType
oObjs = map (\x -> (x,
[PredType
[thing,thing]])) $ Set.toList $ inObjProps
oDtProps = map (\x -> (x,
[PredType
[thing,dataD]])) $ Set.toList $ inDataProps
oIndis = map (\x -> (x,
[OpType Total [] (thing)])) $ Set.toList $ indis
in
return ((emptySign emptyCASL_DLSign)
{
opMap = Map.fromList oIndis
, predMap = Map.fromList (oClasses ++ oObjs ++ oDtProps)
})
-- Preservation of the names
map_named_basic_item :: SDL.Sign -> Named DLBasicItem -> Result [Named DLFORMULA]
map_named_basic_item sign sens =
let
s = sentence sens
in
do
os <- map_basic_item sign s
return $ map (\x -> sens {sentence = x}) os
-- the top mapping function
map_basic_item :: SDL.Sign -> DLBasicItem -> Result [DLFORMULA]
map_basic_item sig sent =
case sent of
DLClass iid props _ _ ->
do
propsM <- mapM (map_class_property sig iid) props
return $ concat $ propsM
DLObjectProperty iid dc rc prel chars _ _ ->
do
opDom <- map_object_domain sig iid dc
opCod <- map_object_codomain sig iid rc
oPrel <- mapM (map_prel sig iid) prel
oChars <- mapM (map_chars sig iid) chars
return $ opDom ++ opCod ++ (concat oPrel) ++ oChars
DLDataProperty iid dc rc prel chars _ _ ->
do
dDom <- map_data_domain sig iid dc
dCod <- map_data_codomain sig iid rc
dPrel <- mapM (map_prel sig iid) prel
oChars <- case chars of
Nothing -> return $ []
Just c ->
do
y <- map_chars sig iid c
return $ [y]
return $ dDom ++ dCod ++ (concat dPrel) ++ oChars
DLIndividual iid tp fts irel _ _ ->
do
tps <- map_types sig iid tp
ofts <- mapM (map_facts sig iid) fts
orel <- mapM (map_irel sig iid) irel
return $ (tps ++ ofts ++ (concat orel))
DLMultiIndi _ _ _ _ _ rn -> fatal_error
"DL2CASL_DL: Multi-Individual was not expanded." rn
map_irel :: SDL.Sign -> Id -> DLIndRel -> Result [DLFORMULA]
map_irel _ indi rel =
case rel of
DLSameAs ids rn -> mapM (\x -> return $ Strong_equation
(Application
(Qual_op_name indi (Op_type Total [] thing nullRange) nullRange)
[]
nullRange)
(Application
(Qual_op_name x (Op_type Total [] thing nullRange) nullRange)
[]
nullRange)
rn) ids
DLDifferentFrom ids rn -> mapM (\x -> return $ Negation
(Strong_equation
(Application
(Qual_op_name indi (Op_type Total [] thing nullRange) nullRange)
[]
nullRange)
(Application
(Qual_op_name x (Op_type Total [] thing nullRange) nullRange)
[]
nullRange)
nullRange)
rn) ids
-- translation of facts
map_facts :: SDL.Sign -> Id -> DLFacts -> Result DLFORMULA
map_facts _ indi fact =
case fact of
DLPosFact (prop, i2) rn -> return $ Predication
(Qual_pred_name prop (Pred_type [thing, thing] nullRange)
nullRange)
[Application
(Qual_op_name indi (Op_type Total [] thing nullRange) nullRange)
[]
nullRange,
Application
(Qual_op_name i2 (Op_type Total [] thing nullRange) nullRange)
[]
nullRange]
rn
DLNegFact (prop, i2) rn -> return $ Negation
(Predication
(Qual_pred_name prop (Pred_type [thing, thing] nullRange)
nullRange)
[Application
(Qual_op_name indi (Op_type Total [] thing nullRange) nullRange)
[]
nullRange,
Application
(Qual_op_name i2 (Op_type Total [] thing nullRange) nullRange)
[]
nullRange]
nullRange)
rn
map_types :: SDL.Sign -> Id -> Maybe DLType -> Result [DLFORMULA]
map_types _ iid mt =
case mt of
Nothing -> return $ []
Just t ->
case t of DLType cids rn ->
mapM (\x -> return $ Predication
(Qual_pred_name x (Pred_type [thing] nullRange) nullRange)
[Application
(Qual_op_name iid (Op_type Total [] thing nullRange) nullRange)
[]
nullRange]
rn) cids
-- mapping of characteristics
map_chars :: SDL.Sign ->
Id ->
DLChars ->
Result DLFORMULA
map_chars sig oid chs =
let
a = mkSimpleId "a"
b = mkSimpleId "b"
c = mkSimpleId "c"
in
if isObjProp sig oid
then
case chs of
DLFunctional ->
return $ Quantification Universal [Var_decl [a, b, c] thing nullRange]
(Implication
(Conjunction
[Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange,
Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var c thing nullRange]
nullRange]
nullRange)
(Strong_equation (Qual_var b thing nullRange)
(Qual_var c thing nullRange)
nullRange)
True
nullRange)
nullRange
DLInvFuntional ->
return $ Quantification Universal [Var_decl [a, b, c] thing nullRange]
(Implication
(Conjunction
[Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange,
Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var c thing nullRange, Qual_var b thing nullRange]
nullRange]
nullRange)
(Strong_equation (Qual_var a thing nullRange)
(Qual_var c thing nullRange)
nullRange)
True
nullRange)
nullRange
DLSymmetric ->
return $ Quantification Universal [Var_decl [a, b] thing nullRange]
(Implication
(Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange)
(Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var b thing nullRange, Qual_var a thing nullRange]
nullRange)
True
nullRange)
nullRange
DLTransitive ->
return $ Quantification Universal [Var_decl [a, b, c] thing nullRange]
(Implication
(Conjunction
[Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange,
Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var b thing nullRange, Qual_var c thing nullRange]
nullRange]
nullRange)
(Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var c thing nullRange]
nullRange)
True
nullRange)
nullRange
DLReflexive ->
return $ Quantification Universal [Var_decl [a] thing nullRange]
(Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var a thing nullRange]
nullRange)
nullRange
DLIrreflexive ->
return $ Quantification Universal [Var_decl [a] thing nullRange]
(Negation
(Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var a thing nullRange]
nullRange)
nullRange)
nullRange
else
fatal_error "handling of Data props nyi" nullRange
map_prel :: SDL.Sign ->
Id -> -- Id of the property
DLPropsRel ->
Result [DLFORMULA]
map_prel sig oid prel =
let
a = mkSimpleId "a"
b = mkSimpleId "b"
in
if isObjProp sig oid
then
case prel of
DLInverses ids rn ->
mapM (\x -> return $
Quantification Universal [Var_decl [a, b] thing nullRange]
(Equivalence
(Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange)
(Predication
(Qual_pred_name x (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var b thing nullRange, Qual_var a thing nullRange]
nullRange)
nullRange)
rn) ids
DLSubProperty ids rn ->
mapM (\x -> return $
Quantification Universal [Var_decl [a, b] thing nullRange]
(Implication
(Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange)
(Predication
(Qual_pred_name x (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange)
True
nullRange)
rn) ids
DLEquivalent ids rn ->
mapM (\x -> return $
Quantification Universal [Var_decl [a, b] thing nullRange]
(Equivalence
(Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange)
(Predication
(Qual_pred_name x (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange)
nullRange)
rn) ids
DLDisjoint ids rn ->
mapM (\x -> return $
Quantification Universal [Var_decl [a, b] thing nullRange]
(Negation
(Conjunction
[Predication
(Qual_pred_name oid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange,
Predication
(Qual_pred_name x (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange]
nullRange)
nullRange)
rn) ids
DLSuperProperty _ rn -> fatal_error "DLSuperProperty nyi" rn
else
error "handling of Data Props nyi"
map_object_domain :: SDL.Sign -> Id -> Maybe DLConcept -> Result [DLFORMULA]
map_object_domain sig iid mcons =
let
a = mkSimpleId "a"
b = mkSimpleId "b"
in
case mcons of
Nothing -> return []
Just cons ->
do
cs <- map_concept sig "a" a cons
return $ [Quantification Universal [Var_decl [a] thing nullRange]
(Implication
(Quantification Existential [Var_decl [b] thing nullRange]
(Predication
(Qual_pred_name iid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange)
nullRange)
cs
True
nullRange)
nullRange]
map_data_codomain :: SDL.Sign -> Id -> Maybe DLConcept -> Result [DLFORMULA]
map_data_codomain sig iid mcons =
let
a = mkSimpleId "a"
b = mkSimpleId "b"
in
case mcons of
Nothing -> return []
Just cons ->
do
cs <- map_concept sig "b" b cons
return $ [Quantification Universal [Var_decl [b] dataD nullRange]
(Implication
(Quantification Existential [Var_decl [a] thing nullRange]
(Predication
(Qual_pred_name iid (Pred_type [thing, dataD] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b dataD nullRange]
nullRange)
nullRange)
cs
True
nullRange)
nullRange]
map_object_codomain :: SDL.Sign -> Id -> Maybe DLConcept -> Result [DLFORMULA]
map_object_codomain sig iid mcons =
let
a = mkSimpleId "a"
b = mkSimpleId "b"
in
case mcons of
Nothing -> return []
Just cons ->
do
cs <- map_concept sig "b" b cons
return $ [Quantification Universal [Var_decl [b] thing nullRange]
(Implication
(Quantification Existential [Var_decl [a] thing nullRange]
(Predication
(Qual_pred_name iid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b thing nullRange]
nullRange)
nullRange)
cs
True
nullRange)
nullRange]
map_data_domain :: SDL.Sign -> Id -> Maybe DLConcept -> Result [DLFORMULA]
map_data_domain sig iid mcons =
let
a = mkSimpleId "a"
b = mkSimpleId "b"
in
case mcons of
Nothing -> return []
Just cons ->
do
cs <- map_concept sig "a" a cons
return $ [Quantification Universal [Var_decl [a] thing nullRange]
(Implication
(Quantification Existential [Var_decl [b] dataD nullRange]
(Predication
(Qual_pred_name iid (Pred_type [thing, dataD] nullRange) nullRange)
[Qual_var a thing nullRange, Qual_var b dataD nullRange]
nullRange)
nullRange)
cs
True
nullRange)
nullRange]
map_class_property :: SDL.Sign -> Id -> DLClassProperty -> Result [DLFORMULA]
map_class_property sig iid dcp =
let
a = mkSimpleId "a"
in
case dcp of
DLSubClassof con rn ->
mapM (\x ->
do
ct <- (map_concept sig "a" a x)
return $ Quantification Universal [Var_decl [a] thing nullRange]
(Implication
(Predication
(Qual_pred_name iid (Pred_type [thing] nullRange) nullRange)
[Qual_var a thing nullRange]
nullRange)
ct
True
nullRange) rn) con
DLEquivalentTo con rn ->
mapM (\x ->
do
ct <- (map_concept sig "a" a x)
return $ Quantification Universal [Var_decl [a] thing nullRange]
(Equivalence
(Predication
(Qual_pred_name iid (Pred_type [thing] nullRange) nullRange)
[Qual_var a thing nullRange]
nullRange)
ct
nullRange) rn) con
DLDisjointWith con rn ->
do
mapM (\x ->
do
ct <- (map_concept sig "a" a x)
return $ Quantification Universal [Var_decl [a] thing nullRange]
(Negation
(Conjunction
[Predication
(Qual_pred_name iid (Pred_type [thing] nullRange) nullRange)
[Qual_var a thing nullRange]
nullRange,
ct]
nullRange)
nullRange)
rn) con
next_str :: String -> String
next_str str =
case str of
[] -> "a"
_ ->
let h = head str
t = tail str
in
case h of
'a' -> 'b' : t
'b' -> 'c' : t
'c' -> 'd' : t
'e' -> 'f' : t
'f' -> 'g' : t
'g' -> 'h' : t
'h' -> 'i' : t
'i' -> 'j' : t
'j' -> 'k' : t
'k' -> 'l' : t
'l' -> 'm' : t
'm' -> 'n' : t
'n' -> 'o' : t
'o' -> 'p' : t
'p' -> 'q' : t
'q' -> 'r' : t
'r' -> 's' : t
's' -> 't' : t
't' -> 'u' : t
'u' -> 'v' : t
'v' -> 'w' : t
'w' -> 'x' : t
'x' -> 'y' : t
'y' -> 'z' : t
'z' -> 'a' : str
_ -> error "Nope"
map_concept :: SDL.Sign -> String -> Token -> DLConcept -> Result DLFORMULA
map_concept sign str iid con =
let
a = mkSimpleId "a"
b = mkSimpleId str
in
case con of
DLAnd c1 c2 rn ->
do
c1t <- map_concept sign str b c1
c2t <- map_concept sign str b c2
return $ Conjunction [c1t,c2t] rn
DLOr c1 c2 rn ->
do
c1t <- map_concept sign str b c1
c2t <- map_concept sign str b c2
return $ Disjunction [c1t,c2t] rn
DLXor c1 c2 rn ->
do
c1t <- map_concept sign str b c1
c2t <- map_concept sign str b c2
return $ Conjunction
[Disjunction [c1t,c2t] nullRange,
Negation (Conjunction [c1t,c2t] nullRange)
nullRange]
rn
DLNot c1 rn ->
do
c1t <- map_concept sign str b c1
return $ Negation c1t rn
DLClassId c1 rn ->
do
return $ Predication
(Qual_pred_name c1 (Pred_type [thing] nullRange) nullRange)
[Qual_var iid thing nullRange]
rn
DLOneOf _ rn -> fatal_error "oneOf nyi" rn
DLSome rid conc rn ->
if isDataProp sign rid
then
let
dataDA = case conc of
DLClassId c _ -> c
_ -> error "NO"
in
do
return $ Quantification Existential [Var_decl [mkSimpleId $ next_str str] dataDA nullRange]
(Predication
(Qual_pred_name rid (Pred_type [thing, dataDA] nullRange) nullRange)
[Qual_var iid thing nullRange, Qual_var (mkSimpleId $ next_str str) dataDA nullRange]
nullRange)
nullRange
else
do
ct <- map_concept sign (next_str str) (mkSimpleId $ next_str str) conc
return $ Quantification Existential [Var_decl [mkSimpleId $ next_str str] thing nullRange]
(Conjunction
[Predication
(Qual_pred_name rid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var iid thing nullRange, Qual_var (mkSimpleId $ next_str str) thing nullRange]
nullRange,
ct]
nullRange)
rn
DLHas rid indi rn ->
if isDataProp sign rid
then
fatal_error "handling of data props nyi" rn
else
return $ Predication
(Qual_pred_name rid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var iid thing nullRange, Qual_var (restoreToken indi) thing nullRange]
rn
DLValue rid indi rn ->
if isDataProp sign rid
then
fatal_error "handling of data props nyi" rn
else
return $ Predication
(Qual_pred_name rid (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var iid thing nullRange, Qual_var (restoreToken indi) thing nullRange]
rn
DLOnlysome rel cons rn -> map_concept sign str iid $ expand (DLOnlysome rel cons rn)
DLOnly rel cons rn ->
if isDataProp sign rel
then
let
dataDA = case cons of
DLClassId c _ -> c
_ -> error "NO"
in
do
return $ Quantification Universal [Var_decl [mkSimpleId $ next_str str] dataDA nullRange]
(Predication
(Qual_pred_name rel (Pred_type [thing, dataDA] nullRange) nullRange)
[Qual_var iid thing nullRange, Qual_var (mkSimpleId $ next_str str) dataDA nullRange]
nullRange)
nullRange
else
do
ct <- map_concept sign (next_str str) (mkSimpleId $ next_str str) cons
return $ Quantification Universal [Var_decl [mkSimpleId $ next_str str] thing nullRange]
(Implication
(Predication
(Qual_pred_name rel (Pred_type [thing, thing] nullRange) nullRange)
[Qual_var iid thing nullRange,
Qual_var (mkSimpleId $ next_str str) thing nullRange]
nullRange)
ct
True
nullRange)
rn
DLMin rid num mcons rn ->
if isDataProp sign rid
then
fatal_error "handling of data props nyi" rn
else
do
ocons <- case mcons of
Nothing -> return $ Nothing
Just x ->
do
o <- map_concept sign str a x
return $ Just o
return $
Quantification Universal [Var_decl [a] thing nullRange]
(ExtFORMULA
(
Cardinality CMin
(Qual_pred_name rid (Pred_type [thing, thing] nullRange) nullRange)
(Qual_var a thing nullRange)
(makeCASLNumber num)
ocons
rn
)) rn
DLMax rid num mcons rn ->
if isDataProp sign rid
then
fatal_error "handling of data props nyi" rn
else
do
ocons <- case mcons of
Nothing -> return $ Nothing
Just x ->
do
o <- map_concept sign str a x
return $ Just o
return $
Quantification Universal [Var_decl [a] thing nullRange]
(ExtFORMULA
(
Cardinality CMax
(Qual_pred_name rid (Pred_type [thing, thing] nullRange) nullRange)
(Qual_var a thing nullRange)
(makeCASLNumber num)
ocons
rn
)) rn
DLExactly rid num mcons rn ->
if isDataProp sign rid
then
fatal_error "handling of data props nyi" rn
else
do
ocons <- case mcons of
Nothing -> return $ Nothing
Just x ->
do
o <- map_concept sign str a x
return $ Just o
return $
Quantification Universal [Var_decl [a] thing nullRange]
(ExtFORMULA
(
Cardinality CExact
(Qual_pred_name rid (Pred_type [thing, thing] nullRange) nullRange)
(Qual_var a thing nullRange)
(makeCASLNumber num)
ocons
rn
)) rn
DLSelf rn -> return $ Strong_equation (Qual_var iid thing nullRange)
(Qual_var b thing nullRange)
rn
makeCASLNumber :: Int -> TERM DL_FORMULA
makeCASLNumber = varOrConst . mkSimpleId . show -- placeholder
restoreToken :: Id -> Token
restoreToken = head . getTokens