0N/ACopyright : (c) Till Mossakowski and Uni Bremen 2004
0N/AMaintainer : till@informatik.uni-bremen.de
0N/AStability : provisional
292N/AThe embedding comorphism from CspCASL to ModalCASL.
292N/A It keeps the CASL part and interprets the CspCASL LTS semantics as
0N/A-- | The identity of the comorphism
0N/Adata CspCASL2Modal = CspCASL2Modal deriving (Show)
0N/Ainstance Language CspCASL2Modal -- default definition is okay
0N/Ainstance Comorphism CspCASL2Modal
0N/A CspBasicSpec () SYMB_ITEMS SYMB_MAP_ITEMS
0N/A M_BASIC_SPEC ModalFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
0N/A Symbol RawSymbol () where
0N/A sourceLogic CspCASL2Modal = CspCASL
0N/A sourceSublogic CspCASL2Modal = ()
0N/A targetLogic CspCASL2Modal = Modal
0N/A mapSublogic CspCASL2Modal _ = Just ()
0N/A map_theory CspCASL2Modal = return . simpleTheoryMapping mapSig mapSen
0N/A map_morphism CspCASL2Modal = return . mapMor
0N/A map_sentence CspCASL2Modal _ = return . mapSen
0N/AmapSig :: CspCASLSign -> MSign
0N/A (emptySign emptyModalSign) {sortSet = sortSet sign
0N/A , sortRel = sortRel sign
0N/A , opMap = opMap sign
0N/A , assocOps = assocOps sign
0N/A , predMap = predMap sign }
0N/A -- ??? add modalities
0N/AmapMor :: CspMorphism -> ModalMor
0N/AmapMor m = Morphism {msource = mapSig $ msource m
0N/A , mtarget = mapSig $ mtarget m
-- needs to be changed once modal symbols are added
mapSen :: () -> ModalFORMULA
mapSen _f = True_atom nullRange
Quantification q vs frm ps ->
Quantification q vs (mapSen frm) ps
Conjunction (map mapSen fs) ps
Disjunction (map mapSen fs) ps
Implication f1 f2 b ps ->
Implication (mapSen f1) (mapSen f2) b ps
Equivalence (mapSen f1) (mapSen f2) ps
Negation frm ps -> Negation (mapSen frm) ps
True_atom ps -> True_atom ps
False_atom ps -> False_atom ps
Existl_equation t1 t2 ps ->
Existl_equation (mapTERM t1) (mapTERM t2) ps
Strong_equation t1 t2 ps ->
Strong_equation (mapTERM t1) (mapTERM t2) ps
Predication pn (map mapTERM as) qs
Definedness t ps -> Definedness (mapTERM t) ps
Membership t ty ps -> Membership (mapTERM t) ty ps
Sort_gen_ax constrs isFree -> Sort_gen_ax constrs isFree
mapTERM :: TERM () -> TERM M_FORMULA
Qual_var v ty ps -> Qual_var v ty ps
Application opsym as qs -> Application opsym (map mapTERM as) qs
Sorted_term trm ty ps -> Sorted_term (mapTERM trm) ty ps
Cast trm ty ps -> Cast (mapTERM trm) ty ps
Conditional t1 f t2 ps ->
Conditional (mapTERM t1) (mapSen f) (mapTERM t2) ps