131N/A{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
131N/ACopyright : (c) Till Mossakowski and Uni Bremen 2004
131N/AMaintainer : till@informatik.uni-bremen.de
131N/AThe embedding comorphism from CspCASL to ModalCASL.
131N/A It keeps the CASL part and interprets the CspCASL LTS semantics as
628N/A-- | The identity of the comorphism
628N/Adata CspCASL2Modal = CspCASL2Modal deriving (Show)
131N/Ainstance Language CspCASL2Modal -- default definition is okay
131N/Ainstance Comorphism CspCASL2Modal
131N/A CspCASL () CspBasicSpec CspCASLSen CspSymbItems CspSymbMapItems
131N/A CspCASLSign CspCASLMorphism CspSymbol CspRawSymbol ()
131N/A Modal () M_BASIC_SPEC ModalFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
131N/A MSign ModalMor Symbol RawSymbol () where
131N/A sourceLogic CspCASL2Modal = cspCASL
131N/A sourceSublogic CspCASL2Modal = ()
131N/A targetLogic CspCASL2Modal = Modal
131N/A mapSublogic CspCASL2Modal _ = Just ()
181N/A map_theory CspCASL2Modal = return . simpleTheoryMapping mapSig mapSen
131N/A map_morphism CspCASL2Modal = return . mapMor
181N/A map_sentence CspCASL2Modal _ = return . mapSen
181N/AmapSig :: CspCASLSign -> MSign
131N/A (emptySign emptyModalSign)
131N/A { sortRel = sortRel sign
, assocOps = assocOps sign
, predMap = predMap sign }
mapMor :: CspCASLMorphism -> ModalMor
mapMor m = (embedMorphism emptyMorExt (mapSig $ msource m) $ mapSig $ mtarget m)
, pred_map = pred_map m }
mapSym :: Symbol -> Symbol
-- needs to be changed once modal symbols are added
mapSen :: CspCASLSen -> ModalFORMULA
mapSen _f = True_atom nullRange
Quantification q vs frm ps ->
Quantification q vs (mapSen frm) ps
Conjunction (map mapSen fs) ps
Disjunction (map mapSen fs) ps
Implication f1 f2 b ps ->
Implication (mapSen f1) (mapSen f2) b ps
Equivalence (mapSen f1) (mapSen f2) ps
Negation frm ps -> Negation (mapSen frm) ps
True_atom ps -> True_atom ps
False_atom ps -> False_atom ps
Existl_equation t1 t2 ps ->
Existl_equation (mapTERM t1) (mapTERM t2) ps
Strong_equation t1 t2 ps ->
Strong_equation (mapTERM t1) (mapTERM t2) ps
Predication pn (map mapTERM as) qs
Definedness t ps -> Definedness (mapTERM t) ps
Membership t ty ps -> Membership (mapTERM t) ty ps
Sort_gen_ax constrs isFree -> Sort_gen_ax constrs isFree
mapTERM :: TERM () -> TERM M_FORMULA
Qual_var v ty ps -> Qual_var v ty ps
Application opsym as qs -> Application opsym (map mapTERM as) qs
Sorted_term trm ty ps -> Sorted_term (mapTERM trm) ty ps
Cast trm ty ps -> Cast (mapTERM trm) ty ps
Conditional t1 f t2 ps ->
Conditional (mapTERM t1) (mapSen f) (mapTERM t2) ps