CommonLogic2CASL.hs revision f03aa0b723e5545fddf7019e287368b9e208ca69
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Description : Comorphism from CommonLogic to CASL
Copyright : (c) Uni Bremen 2011
License : GPLv2 or higher, see LICENSE.txt
Maintainer : eugenk@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (via Logic.Logic)
Translating comorphism from Common Logic to CASL
-}
module Comorphisms.CommonLogic2CASL
(
CommonLogic2CASL (..)
)
where
import Logic.Logic as Logic
import Logic.Comorphism
import Common.ProofTree
import Common.Result
import Common.AS_Annotation as AS_Anno
import qualified Common.Lib.MapSet as MapSet
import qualified Common.Id as Id
import qualified Data.Set as Set
import qualified Data.Map as Map
-- Common Logic
import qualified CommonLogic.Logic_CommonLogic as ClLogic
import qualified CommonLogic.AS_CommonLogic as ClBasic
import qualified CommonLogic.Sign as ClSign
import qualified CommonLogic.Symbol as ClSymbol
import qualified CommonLogic.Morphism as ClMor
import qualified CommonLogic.Sublogic as ClSl
import Comorphisms.CommonLogicModuleElimination (eliminateModules)
import CommonLogic.PredefinedCASLAxioms as Predefined
-- CASL
import qualified CASL.Logic_CASL as CLogic
import qualified CASL.AS_Basic_CASL as CBasic
import qualified CASL.Sublogic as CSL
import qualified CASL.Sign as CSign
import qualified CASL.Morphism as CMor
data CommonLogic2CASL = CommonLogic2CASL deriving Show
instance Language CommonLogic2CASL where
language_name CommonLogic2CASL = "CommonLogic2CASL"
instance Comorphism
CommonLogic2CASL -- comorphism
ClLogic.CommonLogic -- lid domain
ClSl.CommonLogicSL -- sublogics codomain
ClBasic.BASIC_SPEC -- Basic spec domain
ClBasic.TEXT_META -- sentence domain
ClBasic.SYMB_ITEMS -- symbol items domain
ClBasic.SYMB_MAP_ITEMS -- symbol map items domain
ClSign.Sign -- signature domain
ClMor.Morphism -- morphism domain
ClSymbol.Symbol -- symbol domain
ClSymbol.Symbol -- rawsymbol domain
ProofTree -- proof tree codomain
CLogic.CASL -- lid codomain
CSL.CASL_Sublogics -- sublogics codomain
CLogic.CASLBasicSpec -- Basic spec codomain
CBasic.CASLFORMULA -- sentence codomain
CBasic.SYMB_ITEMS -- symbol items codomain
CBasic.SYMB_MAP_ITEMS -- symbol map items codomain
CSign.CASLSign -- signature codomain
CMor.CASLMor -- morphism codomain
CSign.Symbol -- symbol codomain
CMor.RawSymbol -- rawsymbol codomain
ProofTree -- proof tree domain
where
sourceLogic CommonLogic2CASL = ClLogic.CommonLogic
sourceSublogic CommonLogic2CASL = ClSl.funcNoPredsl
targetLogic CommonLogic2CASL = CLogic.CASL
mapSublogic CommonLogic2CASL = Just . mapSub
map_theory CommonLogic2CASL = mapTheory
map_morphism CommonLogic2CASL = mapMor -- TODO prop
map_sentence CommonLogic2CASL = mapSentence
has_model_expansion CommonLogic2CASL = True
mapSub :: ClSl.CommonLogicSL -> CSL.CASL_Sublogics
mapSub _ = CSL.caslTop
{ CSL.cons_features = CSL.emptyMapConsFeature
, CSL.sub_features = CSL.NoSub }
mapMor :: ClMor.Morphism -> Result CMor.CASLMor
mapMor mor = Result [] $ Just (CMor.embedMorphism ()
(mapSig $ ClMor.source mor) $ mapSig $ ClMor.target mor)
{ CMor.pred_map = trMor $ ClMor.propMap mor }
-- | Helper for map mor
trMor :: Map.Map Id.Id Id.Id -> Map.Map (Id.Id, CSign.PredType) Id.Id
trMor mp =
let
pt = CSign.PredType {CSign.predArgs = []}
in
Map.foldWithKey
(\ k a ->
Map.insert (k, pt) a
)
Map.empty
mp
-- |
mapTheory :: (ClSign.Sign,
[AS_Anno.Named ClBasic.TEXT_META])
-> Result
(CSign.CASLSign,
[AS_Anno.Named CBasic.CASLFORMULA])
mapTheory (sig, form) = Result [] $
Just (mapSig sig, Predefined.baseCASLAxioms ++ (map (trNamedForm sig) form))
mapSig :: ClSign.Sign -> CSign.CASLSign
mapSig sign = CSign.uniteCASLSign ((CSign.emptySign ()) {
CSign.opMap = Set.fold (\ x -> MapSet.insert x
$ CSign.mkTotOpType [] individual)
MapSet.empty $ ClSign.allItems sign
}) Predefined.caslSig
trNamedForm :: ClSign.Sign -> AS_Anno.Named (ClBasic.TEXT_META)
-> AS_Anno.Named (CBasic.CASLFORMULA)
trNamedForm sig form = AS_Anno.mapNamed (trFormMeta sig . eliminateModules) form
mapSentence :: ClSign.Sign -> ClBasic.TEXT_META -> Result CBasic.CASLFORMULA
mapSentence sig form = Result [] $ Just $ trFormMeta sig (eliminateModules form)
-- ignores importations
trFormMeta :: ClSign.Sign -> ClBasic.TEXT_META -> CBasic.CASLFORMULA
trFormMeta sig tm = trForm sig $ ClBasic.getText tm
trForm :: ClSign.Sign -> ClBasic.TEXT -> CBasic.CASLFORMULA
trForm sig form =
case form of
ClBasic.Text phrs rn ->
let ps = filter nonImportAndNonEmpty phrs in
if null ps then CBasic.True_atom Id.nullRange else
CBasic.Conjunction (map (phraseForm sig) ps) rn
ClBasic.Named_text _ t _ -> trForm sig t
where nonImportAndNonEmpty :: ClBasic.PHRASE -> Bool
nonImportAndNonEmpty p = case p of
ClBasic.Importation _ -> False
ClBasic.Comment_text _ t _ -> not $ isTextEmpty t
_ -> True
isTextEmpty :: ClBasic.TEXT -> Bool
isTextEmpty txt = case txt of
ClBasic.Named_text _ t _ -> isTextEmpty t
ClBasic.Text [] _ -> True
_ -> False
phraseForm :: ClSign.Sign -> ClBasic.PHRASE -> CBasic.CASLFORMULA
phraseForm sig phr =
case phr of
ClBasic.Module _ -> undefined -- cannot occur because module elimination applied
ClBasic.Sentence s -> senForm sig s
ClBasic.Importation _ -> undefined -- cannot occur, because filtered
ClBasic.Comment_text _ t _ -> trForm sig t
senForm :: ClSign.Sign -> ClBasic.SENTENCE -> CBasic.CASLFORMULA
senForm sig form =
case form of
ClBasic.Bool_sent bs rn
-> case bs of
ClBasic.Negation s -> CBasic.Negation (senForm sig s) rn
ClBasic.Junction ClBasic.Conjunction [] ->
CBasic.True_atom Id.nullRange
ClBasic.Junction ClBasic.Disjunction [] ->
CBasic.False_atom Id.nullRange
ClBasic.Junction ClBasic.Conjunction ss ->
CBasic.Conjunction (map (senForm sig) ss) rn
ClBasic.Junction ClBasic.Disjunction ss ->
CBasic.Disjunction (map (senForm sig) ss) rn
ClBasic.BinOp ClBasic.Implication s1 s2 ->
CBasic.Implication (senForm sig s1) (senForm sig s2) True rn
ClBasic.BinOp ClBasic.Biconditional s1 s2 ->
CBasic.Equivalence (senForm sig s1) (senForm sig s2) rn
ClBasic.Quant_sent qs rn
-> case qs of
ClBasic.QUANT_SENT ClBasic.Universal bs s ->
CBasic.Quantification CBasic.Universal
[CBasic.Var_decl (map bindingSeq bs) individual Id.nullRange]
(senForm sig s) rn
ClBasic.QUANT_SENT ClBasic.Existential bs s ->
CBasic.Quantification CBasic.Existential
[CBasic.Var_decl (map bindingSeq bs) individual Id.nullRange]
(senForm sig s) rn
ClBasic.Atom_sent at rn
-> case at of
ClBasic.Equation trm1 trm2 ->
CBasic.Strong_equation (termForm sig trm1) (termForm sig trm2) rn
ClBasic.Atom trm ts -> CBasic.Predication
(CBasic.Qual_pred_name rel
(CBasic.Pred_type [individual, list]
Id.nullRange)
Id.nullRange) ([termForm sig trm] ++
(consSeq sig ts) : []) Id.nullRange
ClBasic.Comment_sent _ s _ -> senForm sig s
ClBasic.Irregular_sent s _ -> senForm sig s
termForm :: ClSign.Sign -> ClBasic.TERM -> CBasic.TERM a
termForm sig trm = case trm of
ClBasic.Name_term name ->
if ClSign.isSubSigOf (ClSign.emptySig {
ClSign.discourseNames =
Set.singleton (Id.simpleIdToId name)
}) sig
then CBasic.Application
(CBasic.Qual_op_name (Id.simpleIdToId name)
(CBasic.Op_type CBasic.Total [] individual Id.nullRange)
Id.nullRange)
[] $ Id.tokPos name
else CBasic.Qual_var name individual Id.nullRange
ClBasic.Funct_term term ts _ ->
CBasic.Application
(CBasic.Qual_op_name fun
(CBasic.Op_type
CBasic.Total [individual, list]
individual Id.nullRange)
Id.nullRange)
([termForm sig term] ++
(consSeq sig ts) : []) Id.nullRange
ClBasic.Comment_term term _ _ -> termForm sig term
-- TODO: implement ClBasic.That_term s -> ...
consSeq :: ClSign.Sign -> [ClBasic.TERM_SEQ] -> CBasic.TERM a
consSeq _ [] = CBasic.Application (CBasic.Qual_op_name nil
(CBasic.Op_type CBasic.Total [] list Id.nullRange)
Id.nullRange) [] Id.nullRange
consSeq sig (x : xs) = CBasic.Application (CBasic.Qual_op_name cons
(CBasic.Op_type CBasic.Total [individual, list] list Id.nullRange)
Id.nullRange) [termSeqForm sig x, consSeq sig xs] Id.nullRange
termSeqForm :: ClSign.Sign -> ClBasic.TERM_SEQ -> CBasic.TERM a
termSeqForm sig ts = case ts of
ClBasic.Term_seq trm -> case trm of
ClBasic.Name_term name -> if not subSig then
CBasic.Qual_var name individual Id.nullRange else
termForm sig trm
where subSig = ClSign.isSubSigOf new sig
new = ClSign.emptySig
{
ClSign.discourseNames = Set.singleton $ Id.simpleIdToId name
}
ClBasic.Funct_term _ _ _ -> termForm sig trm
ClBasic.Comment_term _ _ _ -> termForm sig trm
-- TODO: implement ClBasic.That_term s -> ...
ClBasic.Seq_marks seqm ->
if ClSign.isSubSigOf (ClSign.emptySig {
ClSign.discourseNames =
Set.singleton (Id.simpleIdToId seqm)
}) sig
then CBasic.Application
(CBasic.Qual_op_name (Id.simpleIdToId seqm)
(CBasic.Op_type CBasic.Total [] individual Id.nullRange)
Id.nullRange)
[] $ Id.tokPos seqm
else CBasic.Qual_var seqm individual Id.nullRange
bindingSeq :: ClBasic.NAME_OR_SEQMARK -> CBasic.VAR
bindingSeq bs = case bs of
ClBasic.Name name -> name
ClBasic.SeqMark seqm -> seqm