CoPCFOL2CoCFOL.hs revision a25c8af1cae2c1c6ab742913f17137b9d8671051
{- |
Module : $Header$
Copyright : (c) Till Mossakowski, Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@tzi.de
Stability : provisional
Portability : portable
Coding out subsorting, lifted to the level of CoCASL
-}
module Comorphisms.CoPCFOL2CoCFOL where
import Logic.Logic
import Logic.Comorphism
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
-- CoCASL
import CoCASL.Logic_CoCASL
import CoCASL.AS_CoCASL
import CoCASL.StatAna
import qualified CoCASL.Sublogic
import CASL.AS_Basic_CASL
import CASL.Morphism
import CASL.Sublogic
import CASL.Simplify
import Comorphisms.PCFOL2CFOL
-- | The identity of the comorphism
data CoPCFOL2CoCFOL = CoPCFOL2CoCFOL deriving (Show)
instance Language CoPCFOL2CoCFOL -- default definition is okay
instance Comorphism CoPCFOL2CoCFOL
CoCASL CoCASL.Sublogic.CoCASL_Sublogics
C_BASIC_SPEC CoCASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CSign
CoCASLMor
CASL.Morphism.Symbol CASL.Morphism.RawSymbol ()
CoCASL CoCASL.Sublogic.CoCASL_Sublogics
C_BASIC_SPEC CoCASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CSign
CoCASLMor
CASL.Morphism.Symbol CASL.Morphism.RawSymbol () where
sourceLogic CoPCFOL2CoCFOL = CoCASL
sourceSublogic CoPCFOL2CoCFOL =
CoCASL.Sublogic.CoCASL_SL
{ CoCASL.Sublogic.has_co = True,
CoCASL.Sublogic.casl =
CASL_SL { has_sub = False,
has_part = True,
has_cons = True,
has_eq = True,
has_pred = True,
which_logic = FOL
}
}
targetLogic CoPCFOL2CoCFOL = CoCASL
targetSublogic CoPCFOL2CoCFOL =
CoCASL.Sublogic.CoCASL_SL
{ CoCASL.Sublogic.has_co = True,
CoCASL.Sublogic.casl =
CASL_SL { has_sub = False,
has_part = False, -- partiality is coded out
has_cons = True,
has_eq = True,
has_pred = True,
which_logic = FOL
}
}
map_theory CoPCFOL2CoCFOL = mkTheoryMapping ( \ sig ->
let e = sig2FOL sig in return (e, generateFOLAxioms sig))
(map_sentence CoPCFOL2CoCFOL)
map_morphism CoPCFOL2CoCFOL m = return m
{ msource = sig2FOL $ msource m
, mtarget = sig2FOL $ mtarget m
, fun_map = Map.map (\ (i, _) -> (i, Total)) $
fun_map m }
map_sentence CoPCFOL2CoCFOL sig = let bsrts = sortsWithBottom sig in
return . simplifyFormula simC_FORMULA .
totalizeFormula bsrts (totC_FORMULA bsrts)
map_symbol CoPCFOL2CoCFOL s =
Set.singleton s { symbType = totalizeSymbType $ symbType s }
simC_FORMULA :: C_FORMULA -> C_FORMULA
simC_FORMULA = foldC_Formula (simplifyRecord simC_FORMULA) mapCoRecord
totC_FORMULA :: Set.Set SORT -> C_FORMULA -> C_FORMULA
totC_FORMULA bsrts = foldC_Formula (totalRecord bsrts $ totC_FORMULA bsrts)
mapCoRecord { foldCoSort_gen_ax = \ _ s o b ->
CoSort_gen_ax s (map totalizeOpSymb o) b }