CSMOF2CASL.hs revision e9458b1a7a19a63aa4c179f9ab20f4d50681c168
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : ./Comorphisms/CSMOF2CASL.hs
Description : Coding CSMOF into CASL
Copyright : (c) Daniel Calegari Universidad de la Republica, Uruguay 2013
License : GPLv2 or higher, see LICENSE.txt
Maintainer : dcalegar@fing.edu.uy
Stability : provisional
Portability : portable
-}
module Comorphisms.CSMOF2CASL
( CSMOF2CASL (..), mapSign, generateVars
) where
import Logic.Logic
import Logic.Comorphism
import Common.DefaultMorphism
-- CSMOF
import CSMOF.Logic_CSMOF as CSMOF
import CSMOF.As as CSMOFAs
import CSMOF.Sign as CSMOF
-- CASL
import CASL.Logic_CASL
import CASL.AS_Basic_CASL as C
import CASL.Sublogic
import CASL.Sign as C
import CASL.Morphism as C
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Id
import Common.ProofTree
import Common.Result
import qualified Common.Lib.Rel as Rel
import qualified Common.Lib.MapSet as MapSet
import qualified Data.Set as Set
import qualified Data.Map as Map
import Data.Maybe (fromMaybe)
-- | lid of the morphism
data CSMOF2CASL = CSMOF2CASL deriving Show
instance Language CSMOF2CASL -- default is ok
instance Comorphism CSMOF2CASL
CSMOF.CSMOF
()
CSMOFAs.Metamodel
CSMOF.Sen
()
()
CSMOF.Sign
CSMOF.Morphism
()
()
()
CASL
CASL_Sublogics
CASLBasicSpec
CASLFORMULA
SYMB_ITEMS
SYMB_MAP_ITEMS
CASLSign
CASLMor
C.Symbol
C.RawSymbol
ProofTree
where
sourceLogic CSMOF2CASL = CSMOF
sourceSublogic CSMOF2CASL = ()
targetLogic CSMOF2CASL = CASL
mapSublogic CSMOF2CASL _ = Just $ caslTop
{ has_part = False
, sub_features = LocFilSub
, cons_features = SortGen True True }
map_theory CSMOF2CASL = mapTheory
map_sentence CSMOF2CASL s = return . mapSen (mapSign s)
map_morphism CSMOF2CASL = mapMor
-- map_symbol CSMOF2CASL _ = Set.singleton . mapSym
is_model_transportable CSMOF2CASL = True
has_model_expansion CSMOF2CASL = True
is_weakly_amalgamable CSMOF2CASL = True
isInclusionComorphism CSMOF2CASL = True
mapTheory :: (CSMOF.Sign, [Named CSMOF.Sen]) -> Result (CASLSign, [Named CASLFORMULA])
mapTheory (s, ns) = let cs = mapSign s in
return (cs, map (mapNamed $ mapSen cs) ns ++ sentences cs)
mapSign :: CSMOF.Sign -> CASLSign
mapSign s =
let
sorts = getSorts (types s) (typeRel s)
ops = getOperations (instances s)
predd = getPredicates (properties s)
sent = getSentencesRels (links s) (instances s)
sentDisEmb = getSortGen (typeRel s) (abstractClasses s) (types s) (instances s)
noConfBetOps = getNoConfusionBetweenSets (instances s) (typeRel s)
in
C.Sign
{ sortRel = sorts
, revSortRel = Just $ Rel.fromList (map revertOrder (Rel.toList sorts))
, emptySortSet = Set.empty
, opMap = ops
, assocOps = MapSet.empty
, predMap = fst predd
, varMap = Map.empty
, sentences = snd predd ++ sent ++ sentDisEmb ++ noConfBetOps
, declaredSymbols = Set.empty
, envDiags = []
, annoMap = MapSet.empty
, globAnnos = emptyGlobalAnnos
, extendedInfo = ()
}
getSorts :: Set.Set TypeClass -> Rel.Rel TypeClass -> Rel.Rel SORT
getSorts setC relC =
let relS = Set.fold (insertSort . name) Rel.empty setC
in foldr insertPair relS (Rel.toList relC)
insertSort :: String -> Rel.Rel SORT -> Rel.Rel SORT
insertSort s = Rel.insertPair (stringToId s) (stringToId s)
insertPair :: (TypeClass, TypeClass) -> Rel.Rel SORT -> Rel.Rel SORT
insertPair (t1, t2) = Rel.insertPair (stringToId $ name t1) (stringToId $ name t2)
revertOrder :: (SORT, SORT) -> (SORT, SORT)
revertOrder (a, b) = (b, a)
getPredicates :: Set.Set PropertyT -> (PredMap, [Named (FORMULA f)])
getPredicates = Set.fold insertPredicate (MapSet.empty, [])
insertPredicate :: PropertyT -> (PredMap, [Named (FORMULA f)]) -> (PredMap, [Named (FORMULA f)])
insertPredicate prop (predM, form) =
let
sort1 = stringToId $ name $ sourceType prop
sort2 = stringToId $ name $ targetType prop
pname1 = stringToId $ targetRole prop
ptype1 = PredType $ sort1 : [sort2]
pname2 = stringToId $ sourceRole prop
ptype2 = PredType $ sort2 : [sort1]
nam = "equiv_" ++ targetRole prop ++ "_" ++ sourceRole prop
varsD = [Var_decl [mkSimpleId "x"] sort2 nullRange,
Var_decl [mkSimpleId "y"] sort1 nullRange]
sentRel = C.Relation
(C.Predication (C.Qual_pred_name pname2
(Pred_type [sort2, sort1] nullRange) nullRange)
(C.Qual_var (mkSimpleId "x") sort2 nullRange :
[C.Qual_var (mkSimpleId "y") sort1 nullRange]) nullRange)
C.Equivalence
(C.Predication (C.Qual_pred_name pname1
(Pred_type [sort1, sort2] nullRange) nullRange)
(C.Qual_var (mkSimpleId "y") sort1 nullRange :
[C.Qual_var (mkSimpleId "x") sort2 nullRange]) nullRange)
nullRange
sent = Quantification Universal varsD sentRel nullRange
in
{- MapSet does not allows repeated elements, but predicate names can be repeated
(this must be corrected by creating a more complex ID) -}
if sourceRole prop == "_"
then (MapSet.insert pname1 ptype1 predM, form)
else if targetRole prop == "_"
then (MapSet.insert pname2 ptype2 predM, form)
else (MapSet.insert pname1 ptype1 $ MapSet.insert pname2 ptype2 predM,
makeNamed nam sent : form)
getOperations :: Map.Map String TypeClass -> OpMap
getOperations ops = foldr insertOperations MapSet.empty (Map.toList ops)
insertOperations :: (String, TypeClass) -> OpMap -> OpMap
insertOperations (na, tc) opM =
let
opName = stringToId na
opType = OpType Total [] (stringToId $ name tc)
in
MapSet.insert opName opType opM
getSentencesRels :: Set.Set LinkT -> Map.Map String TypeClass ->
[Named CASLFORMULA]
getSentencesRels = completenessOfRelations
completenessOfRelations :: Set.Set LinkT -> Map.Map String TypeClass ->
[Named CASLFORMULA]
completenessOfRelations linkk ops =
let ordLinks = getLinksByProperty linkk
in foldr ((++) . createComplFormula ops) [] (Map.toList ordLinks)
createComplFormula :: Map.Map String TypeClass -> (String, [LinkT]) ->
[Named CASLFORMULA]
createComplFormula ops (nam, linksL) =
let
varA = mkSimpleId "x"
varB = mkSimpleId "y"
in
case linksL of
[] -> []
LinkT _ _ pr : _ ->
let sorA = stringToId $ name $ sourceType pr
sorB = stringToId $ name $ targetType pr
varsD = [Var_decl [varA] sorA nullRange,
Var_decl [varB] sorB nullRange]
sent = C.Relation (C.Predication (C.Qual_pred_name
(stringToId $ targetRole pr) (Pred_type [sorA, sorB] nullRange)
nullRange) (C.Qual_var varA sorA nullRange :
[C.Qual_var varB sorB nullRange]) nullRange)
C.Equivalence (Junction Dis
(foldr ((:) . getPropHold ops varA sorA varB sorB) [] linksL)
nullRange) nullRange
sentQuan = Quantification Universal varsD sent nullRange
in [makeNamed ("compRel_" ++ nam) sentQuan]
getPropHold :: Map.Map String TypeClass -> VAR -> SORT -> VAR -> SORT -> LinkT
-> CASLFORMULA
getPropHold ops varA sorA varB sorB lin =
let
souObj = Map.lookup (sourceVar lin) ops
tarObj = Map.lookup (targetVar lin) ops
typSou = case souObj of
Nothing -> sourceVar lin -- if happens then is an error
Just tSou -> name tSou
typTar = case tarObj of
Nothing -> targetVar lin -- if happens then is an error
Just tTar -> name tTar
eqA = Equation (Qual_var varA sorA nullRange)
Strong
(Application (Qual_op_name (stringToId (sourceVar lin))
(Op_type Total [] (stringToId typSou) nullRange)
nullRange) [] nullRange)
nullRange
eqB = Equation (Qual_var varB sorB nullRange)
Strong
(Application (Qual_op_name (stringToId (targetVar lin))
(Op_type Total [] (stringToId typTar) nullRange)
nullRange) [] nullRange)
nullRange
in
Junction Con (eqA : [eqB]) nullRange
getLinksByProperty :: Set.Set LinkT -> Map.Map String [LinkT]
getLinksByProperty linkk =
let elems = Set.elems linkk
in foldr getByProperty Map.empty elems
getByProperty :: LinkT -> Map.Map String [LinkT] -> Map.Map String [LinkT]
getByProperty lin mapL =
let
prope = CSMOF.property lin
nameLook = sourceRole prope ++ name (sourceType prope) ++ targetRole prope
++ name (targetType prope)
setProp = Map.lookup nameLook mapL
in
case setProp of
Nothing -> Map.insert nameLook [lin] (Map.delete nameLook mapL)
Just s -> Map.insert nameLook (lin : s) (Map.delete nameLook mapL)
getSortGen :: Rel.Rel TypeClass -> Set.Set TypeClass -> Set.Set TypeClass ->
Map.Map String TypeClass -> [Named CASLFORMULA]
getSortGen typpR absCl typCl inst = disjointEmbedding absCl typpR ++
sortGeneration inst ++
sortGenerationNonAbstractSuperClasses typpR typCl absCl inst
-- Free type of non-abstract superclasses
sortGenerationNonAbstractSuperClasses :: Rel.Rel TypeClass -> Set.Set TypeClass
-> Set.Set TypeClass -> Map.Map String TypeClass -> [Named CASLFORMULA]
sortGenerationNonAbstractSuperClasses typpR typCl absCl inst =
let
ordObj = foldr orderByClass Map.empty (Map.toList inst)
nonAbsClasses = getNonAbstractClasess absCl typCl
nonAbsClassesWChilds = filter (not . null . snd)
(Set.fold ((:) . getSubClasses typpR) [] nonAbsClasses)
childObjects = foldr ((:) . getClassSubObjects ordObj)
[] nonAbsClassesWChilds -- [(TypeClass,[String])]
in
foldr ((:) . toSortConstraintNonAbsClass inst) [] childObjects
-- Takes the objects, and a class with its child classes and returns the descendent objects of such class
getClassSubObjects :: Map.Map TypeClass [String] -> (TypeClass, [TypeClass]) ->
(TypeClass, [String])
getClassSubObjects objs (tc, subCl) =
let objTC = findObjectInMap objs tc
in
(tc, objTC ++ foldr ((++) . findObjectInMap objs) [] subCl)
findObjectInMap :: Map.Map TypeClass [String] -> TypeClass -> [String]
findObjectInMap objs tc = fromMaybe [] $ Map.lookup tc objs
getNonAbstractClasess :: Set.Set TypeClass -> Set.Set TypeClass -> Set.Set TypeClass
getNonAbstractClasess absCl classes = Set.difference classes absCl
getSubClasses :: Rel.Rel TypeClass -> TypeClass -> (TypeClass, [TypeClass])
getSubClasses typpR tc =
let subCla = map fst (filter (isParent tc) (Rel.toList typpR))
rec = foldr ((++) . snd . getSubClasses typpR) [] subCla
in (tc, subCla ++ rec)
isParent :: TypeClass -> (TypeClass, TypeClass) -> Bool
isParent tc (_, tc2) = tc == tc2
toSortConstraintNonAbsClass :: Map.Map String TypeClass -> (TypeClass, [String])
-> Named CASLFORMULA
toSortConstraintNonAbsClass inst (tc, lisObj) =
let
sor = stringToId $ name tc
varA = Var_decl [mkSimpleId "x"] sor nullRange
sent = Junction Dis (foldr ((:) . getEqualityVarObject sor inst)
[] lisObj) nullRange
constr = Quantification Universal [varA] sent nullRange
in
makeNamed ("sortGenCon_" ++ name tc) constr
getEqualityVarObject :: SORT -> Map.Map String TypeClass -> String -> CASLFORMULA
getEqualityVarObject sor inst obj =
let oTyp = case Map.lookup obj inst of
Nothing -> stringToId obj -- If happens, there is an error
Just ob -> stringToId $ name ob
in
Equation (Qual_var (mkSimpleId "x") sor nullRange)
Strong
(Application (Qual_op_name (stringToId obj)
(Op_type Total [] oTyp nullRange)
nullRange) [] nullRange)
nullRange
-- Sorts are generated as a free type of object functions
sortGeneration :: Map.Map String TypeClass -> [Named CASLFORMULA]
sortGeneration inst =
let
ordObj = foldr orderByClass Map.empty (Map.toList inst)
noJunk = foldr ((:) . toSortConstraint) [] (Map.toList ordObj)
in
noJunk
mapFilterJust :: [Maybe a] -> [a]
mapFilterJust list =
case list of
[] -> []
a : rest -> case a of
Nothing -> mapFilterJust rest
Just el -> el : mapFilterJust rest
orderByClass :: (String, TypeClass) -> Map.Map TypeClass [String] ->
Map.Map TypeClass [String]
orderByClass (ob, tc) mapTC =
case Map.lookup tc mapTC of
Nothing -> Map.insert tc [ob] mapTC
Just listObj -> Map.insert tc (ob : listObj) (Map.delete tc mapTC)
getNoConfusionBetweenSets :: Map.Map String TypeClass -> Rel.Rel TypeClass ->
[Named CASLFORMULA]
getNoConfusionBetweenSets inst relC =
let ordObj = Map.toList $ foldr orderByClass Map.empty (Map.toList inst)
in mapFilterJust $ foldr ((:) . getNoConfusionBSetsAxiom ordObj relC) [] ordObj
getNoConfusionBSetsAxiom :: [(TypeClass, [String])] -> Rel.Rel TypeClass ->
(TypeClass, [String]) -> Maybe (Named CASLFORMULA)
getNoConfusionBSetsAxiom ordObj relC (tc, lisObj) =
case lisObj of
[] -> Nothing
_ : _ ->
let filteredObj = removeUntilType tc ordObj
diffForm = foldr ((++) . diffOfRestConstants (tc, lisObj) relC)
[] filteredObj in
case diffForm of
[] -> Nothing
_ : _ -> let constr = Junction Con diffForm nullRange
in Just $ makeNamed ("noConfusion_" ++ name tc) constr
removeUntilType :: TypeClass -> [(TypeClass, [String])] -> [(TypeClass, [String])]
removeUntilType tc lis =
case lis of
[] -> []
(tc2, lisObj2) : rest -> if tc == tc2
then (tc2, lisObj2) : rest
else removeUntilType tc rest
diffOfRestConstants :: (TypeClass, [String]) -> Rel.Rel TypeClass ->
(TypeClass, [String]) -> [CASLFORMULA]
diffOfRestConstants (tc1, lisObj1) relC (tc2, lisObj2)
| tc1 == tc2 = foldr ((++) . diffOfRestOps tc1 lisObj1) [] lisObj1
| haveCommonSort tc1 tc2 relC =
concatMap (diffOfRestOpsDiffSort (tc1, lisObj1) tc2) lisObj2
| otherwise = []
haveCommonSort :: TypeClass -> TypeClass -> Rel.Rel TypeClass -> Bool
haveCommonSort t1 t2 relT =
let succT1 = superSorts relT t1
succT2 = superSorts relT t2
in not $ Set.null $ Set.intersection succT1 succT2
-- This is the non exported function reachable in Rel
superSorts :: Rel.Rel TypeClass -> TypeClass -> Set.Set TypeClass
superSorts relT tc = Set.fold reach Set.empty $ Rel.succs relT tc where
reach e s = if Set.member e s then s
else Set.fold reach (Set.insert e s) $ Rel.succs relT e
diffOfRestOpsDiffSort :: (TypeClass, [String]) -> TypeClass -> String -> [CASLFORMULA]
diffOfRestOpsDiffSort (tc1, lisObj1) tc2 objName = concatMap
(diffOpsDiffSorts tc2 objName tc1) lisObj1
diffOpsDiffSorts :: TypeClass -> String -> TypeClass -> String -> [CASLFORMULA]
diffOpsDiffSorts tc2 objName2 tc1 objName1 =
[Negation (Equation (Application (Qual_op_name (stringToId objName1)
(Op_type Total [] (stringToId $ name tc1) nullRange) nullRange) [] nullRange)
Strong (Application (Qual_op_name (stringToId objName2)
(Op_type Total [] (stringToId $ name tc2) nullRange)
nullRange) [] nullRange) nullRange) nullRange]
diffOfRestOps :: TypeClass -> [String] -> String -> [CASLFORMULA]
diffOfRestOps tc lisObj objName =
let lis = removeUntil lisObj objName
in concatMap (diffOps tc objName) lis
removeUntil :: [String] -> String -> [String]
removeUntil lis str =
case lis of
[] -> []
a : rest -> if a == str
then rest
else removeUntil rest str
diffOps :: TypeClass -> String -> String -> [CASLFORMULA]
diffOps tc objName1 objName2 =
[Negation (Equation
(Application (Qual_op_name (stringToId objName1)
(Op_type Total [] (stringToId $ name tc) nullRange)
nullRange) [] nullRange)
Strong
(Application (Qual_op_name (stringToId objName2)
(Op_type Total [] (stringToId $ name tc) nullRange)
nullRange) [] nullRange)
nullRange)
nullRange | objName1 /= objName2]
toSortConstraint :: (TypeClass, [String]) -> Named CASLFORMULA
toSortConstraint (tc, lisObj) =
let
sor = stringToId $ name tc
simplCon = Constraint sor (foldr ((:) . toConstraint sor) [] lisObj) sor
constr = mkSort_gen_ax [simplCon] True
in
makeNamed ("sortGenCon_" ++ name tc) constr
toConstraint :: Id -> String -> (OP_SYMB, [Int])
toConstraint sor obName =
let obj = stringToId obName
in
(Qual_op_name obj (Op_type Total [] sor nullRange) nullRange, [])
-- Each abstract class is the disjoint embedding of it subsorts
disjointEmbedding :: Set.Set TypeClass -> Rel.Rel TypeClass ->
[Named CASLFORMULA]
disjointEmbedding absCl rel =
let
injSyms = map (\ (s, t) -> (Qual_op_name
(mkUniqueInjName (stringToId $ name s) (stringToId $ name t))
(Op_type Total [stringToId $ name s]
(stringToId $ name t) nullRange) nullRange, [])) $ Rel.toList $
Rel.irreflex rel
resType _ (Op_name _, _) = False
resType s (Qual_op_name _ t _, _) = res_OP_TYPE t == s
collectOps s = Constraint (stringToId $ name s)
(filter (resType (stringToId $ name s)) injSyms) (stringToId $ name s)
sortList = Set.toList absCl
constrs = map collectOps sortList
in
[makeNamed "disjEmbedd" (Sort_gen_ax constrs True)]
mapSen :: CASLSign -> CSMOF.Sen -> CASLFORMULA
mapSen sig (Sen con car cot) = -- trueForm
case cot of
EQUAL -> let
minC = minConstraint con car (predMap sig)
maxC = maxConstraint con car (predMap sig)
in
Junction Con (minC : [maxC]) nullRange
LEQ -> maxConstraint con car (predMap sig)
GEQ -> minConstraint con car (predMap sig)
minConstraint :: MultConstr -> Integer -> PredMap -> CASLFORMULA
minConstraint con int predM =
let
predTypes = MapSet.lookup (stringToId $ getRole con) predM -- Set PredType
souVars = generateVars "x" 1
tarVars = generateVars "y" int
correctPredType = Set.fold (getCorrectPredType con) [] predTypes
souVarDec = Var_decl souVars (head (predArgs (head correctPredType))) nullRange
tarVarDec = Var_decl tarVars (last (predArgs (head correctPredType))) nullRange
in
if int > 1
then Quantification Universal [souVarDec] (Quantification
Existential [tarVarDec] (Junction Con (generateVarDiff tarVarDec :
[generateProp souVarDec tarVarDec (stringToId $ getRole con)])
nullRange) nullRange) nullRange
else Quantification Universal [souVarDec] (Quantification
Existential [tarVarDec] (generateProp souVarDec tarVarDec
(stringToId $ getRole con)) nullRange) nullRange
getCorrectPredType :: MultConstr -> PredType -> [PredType] -> [PredType]
getCorrectPredType con pt ptLis =
if stringToId (name (CSMOF.getType con)) == head (predArgs pt)
then pt : ptLis else ptLis
generateVars :: String -> Integer -> [VAR]
generateVars varRoot int =
case int of
1 -> [mkSimpleId (varRoot ++ "_" ++ show int)]
n -> mkSimpleId (varRoot ++ "_" ++ show int) : generateVars varRoot (n - 1)
generateVarDiff :: VAR_DECL -> CASLFORMULA
generateVarDiff (Var_decl vars sor _) = Junction Con
(foldr ((++) . diffOfRest sor vars) [] vars) nullRange
diffOfRest :: SORT -> [VAR] -> VAR -> [CASLFORMULA]
diffOfRest sor vars var = map (diffVar sor var) vars
diffVar :: SORT -> VAR -> VAR -> CASLFORMULA
diffVar sor var1 var2 =
if var1 /= var2
then Negation (Equation
(Qual_var var1 sor nullRange)
Strong
(Qual_var var2 sor nullRange)
nullRange)
nullRange
else trueForm
generateProp :: VAR_DECL -> VAR_DECL -> Id -> CASLFORMULA
generateProp (Var_decl varD sort _) (Var_decl varD2 sort2 _) rol =
Junction Con (map (createPropRel (head varD) sort rol sort2) varD2) nullRange
createPropRel :: VAR -> SORT -> Id -> SORT -> VAR -> CASLFORMULA
createPropRel souVar sor rol sor2 tarVar =
Predication (C.Qual_pred_name rol (Pred_type [sor, sor2] nullRange) nullRange)
(Qual_var souVar sor nullRange : [Qual_var tarVar sor2 nullRange]) nullRange
maxConstraint :: MultConstr -> Integer -> PredMap -> CASLFORMULA
maxConstraint con int predM =
let
predTypes = MapSet.lookup (stringToId $ getRole con) predM -- Set PredType
souVars = generateVars "x" 1
tarVars = generateVars "y" (int + 1)
correctPredType = Set.fold (getCorrectPredType con) [] predTypes
souVarDec = Var_decl souVars (head (predArgs (head correctPredType))) nullRange
tarVarDec = Var_decl tarVars (last (predArgs (head correctPredType))) nullRange
in
Quantification Universal (souVarDec : [tarVarDec])
(Relation
(Junction Con [generateProp souVarDec tarVarDec (stringToId $ getRole con)] nullRange)
Implication
(Junction Dis (generateExEqual tarVarDec) nullRange)
nullRange)
nullRange
generateExEqual :: VAR_DECL -> [CASLFORMULA]
generateExEqual (Var_decl varD sor _) = generateExEqualList varD sor
generateExEqualList :: [VAR] -> SORT -> [CASLFORMULA]
generateExEqualList vars sor =
case vars of
[] -> []
v : rest -> generateExEqualVar rest sor v ++ generateExEqualList rest sor
generateExEqualVar :: [VAR] -> SORT -> VAR -> [CASLFORMULA]
generateExEqualVar vars sor var =
foldr ((++) . (\ el -> if el == var
then []
else [Equation (Qual_var var sor nullRange) Strong
(Qual_var el sor nullRange) nullRange]))
[] vars
-- | Translation of morphisms
mapMor :: CSMOF.Morphism -> Result CASLMor
mapMor m = return C.Morphism
{ msource = mapSign $ domOfDefaultMorphism m
, mtarget = mapSign $ codOfDefaultMorphism m
, sort_map = Map.empty
, op_map = Map.empty
, pred_map = Map.empty
, extended_map = ()
}
-- mapSym :: CSMOF.Symbol -> C.Symbol