CFOL2IsabelleHOL.hs revision b565cd55a13dbccc4e66c344316da525c961e4ca
{- |
Module : $Header$
Copyright : (c) Till Mossakowski and Uni Bremen 2003
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The embedding comorphism from CASL to Isabelle-HOL.
-}
{- todo
disambiguate names (i.e. those coming from Main)
-}
module Comorphisms.CFOL2IsabelleHOL where
import Logic.Logic as Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Id
import Common.Result
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Data.List as List
import Data.Maybe
import Data.Char
-- CASL
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sublogic
import CASL.Sign
import CASL.Morphism
import CASL.Quantification
import CASL.Overload
-- Isabelle
import Isabelle.IsaSign as IsaSign
import Isabelle.IsaConsts
import Isabelle.Logic_Isabelle
import Isabelle.Translate
-- | The identity of the comorphism
data CFOL2IsabelleHOL = CFOL2IsabelleHOL deriving (Show)
-- Isabelle theories
type IsaTheory = (IsaSign.Sign,[Named IsaSign.Sentence])
-- extended signature translation
type SignTranslator f e = CASL.Sign.Sign f e -> e -> IsaTheory -> IsaTheory
-- extended signature translation for CASL
sigTrCASL :: SignTranslator () ()
sigTrCASL _ _ = id
-- extended formula translation
type FormulaTranslator f e = CASL.Sign.Sign f e -> f -> Term
-- extended formula translation for CASL
formTrCASL :: FormulaTranslator () ()
formTrCASL _ _ = error "CFOL2IsabelleHOL: No extended formulas allowed in CASL"
instance Language CFOL2IsabelleHOL -- default definition is okay
instance Comorphism CFOL2IsabelleHOL
CASL CASL.Sublogic.CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
CASL.Morphism.Symbol CASL.Morphism.RawSymbol ()
Isabelle () () IsaSign.Sentence () ()
IsaSign.Sign
IsabelleMorphism () () () where
sourceLogic _ = CASL
sourceSublogic _ = CASL_SL
{ has_sub = False, -- no subsorting yet ...
has_part = False, -- no partiality yet ...
has_cons = True,
has_eq = True,
has_pred = True,
which_logic = FOL
}
targetLogic _ = Isabelle
targetSublogic _ = ()
map_theory _ = transTheory sigTrCASL formTrCASL
map_morphism CFOL2IsabelleHOL mor = do
(sig1,_) <- map_sign CFOL2IsabelleHOL (Logic.dom CASL mor)
(sig2,_) <- map_sign CFOL2IsabelleHOL (cod CASL mor)
inclusion Isabelle sig1 sig2
map_sentence _ sign =
return . mapSen formTrCASL sign
map_symbol _ _ = error "CASL2Isabelle.map_symbol"
------------------------------ Ids ---------------------------------
---------------------------- Signature -----------------------------
baseSign :: BaseSig
baseSign = Main_thy
transTheory :: SignTranslator f e ->
FormulaTranslator f e ->
(CASL.Sign.Sign f e, [Named (FORMULA f)])
-> Result IsaTheory
transTheory trSig trForm (sign,sens) =
fmap (trSig sign (extendedInfo sign)) $
return (IsaSign.emptySign {
baseSig = baseSign,
tsig = emptyTypeSig {arities =
Set.fold (\s -> let s1 = (showIsaT s baseSign) in
if s1 `elem` dtTypes then id
else Map.insert s1 [(isaTerm, [])])
Map.empty (sortSet sign)},
constTab = Map.foldWithKey insertPreds
(Map.filterWithKey (isNotIn dtDefs)
$ Map.foldWithKey insertOps Map.empty
$ opMap sign) $ predMap sign,
dataTypeTab = dtDefs},
map (mapNamed (mapSen trForm sign)) real_sens)
-- for now, no new sentences
where
(real_sens, sort_gen_axs) = List.partition
(\ s -> case sentence s of
Sort_gen_ax _ _ -> False
_ -> True) sens
dtDefs = topoSort (makeDtDefs sign sort_gen_axs)
dtTypes = map ((\(Type s _ _) -> s).fst) $ concat dtDefs
insertOps op ts m =
if Set.size ts == 1
then Map.insert (showIsaT op baseSign) (transOpType (Set.findMin ts)) m
else
foldl (\m1 (t,i) -> Map.insert (showIsaIT op i baseSign)
(transOpType t) m1) m
(zip (Set.toList ts) [1..(Set.size ts)])
insertPreds pre ts m =
if Set.size ts == 1
then Map.insert (showIsaT pre baseSign)
(transPredType (Set.findMin ts)) m
else
foldl (\m1 (t,i) -> Map.insert (showIsaIT pre i baseSign)
(transPredType t) m1) m
(zip (Set.toList ts) [1..Set.size ts])
-- | filter out constructors from data types
isNotIn :: DataTypeTab -> VName -> Typ -> Bool
isNotIn l a _ = all (all (isNotIn' a . snd)) l where
isNotIn' :: VName -> [DataTypeAlt] -> Bool
isNotIn' c = all ((/= c) . fst)
-- topoSort
-- A(i) = [[j]] with definition of datatype i needs j
-- inI(i) = [n] i is needed by n other definions
-- (1) L<-[]
-- (2) for i=1 to n do inI(i)<-0 od;
-- (3) for i=1 to n do
-- (4) for (j elem A(i)) do inI(j)<-inI(j) + 1 od
-- (5) od;
-- (6) for i=1 to n do
-- (7) if inI(i) = 0 then i:L fi
-- (8) od;
-- (9) while L != [] do
--(10) v <- head(L)
--(11) L <- tail(L)
--(12) sortedList <- sortedList ++ v
--(13) for (w elem A(v)) do
--(14) inI(w) <- inI(w) - 1
--(15) if inI(w)=0 then L<- L++w fi
--(16) od;
--(17) od;
topoSort :: [[(Typ, [(a, [Typ])])]] -> [[(Typ, [(a, [Typ])])]]
topoSort [] = []
topoSort dts = whileL (collectL inI_ 1) inI_ adI_ dts
where
(inI_, adI_) = makeLists [] dts 1 (map (const 0) dts)
$ map (const [0]) dts
-- generate both A- and inI-list
makeLists :: [[(Typ, [(a, [Typ])])]] -> [[(Typ, [(a, [Typ])])]] ->
Int -> [Int] -> [[Int]] -> ([Int], [[Int]])
makeLists _ [] _ inI ad = (inI, ad)
makeLists as1 (a:as2) n inI ad =
if (snd (findIn as1 a n [])) == True then
makeLists (concat [as1, [a]]) as2 (n+1) updateIn1 updateAdj1
else
if (snd (findIn as2 a n [])) == True then
makeLists (concat [as1,[a]]) as2 (n+1) updateIn2 updateAdj2
else makeLists (concat [as1, [a]]) as2 (n+1) inI ad
where
updateAdj1 = updateAdj ad (fst (findIn as1 a n [])) 0
updateAdj2 = updateAdj ad (fst (findIn as2 a n [])) n
updateIn1 = updateIn inI (count (fst (findIn as1 a n []))) n
updateIn2 = updateIn inI (count (fst (findIn as1 a n [])) +
count (fst (findIn as2 a n []))) n
-- is Type a in the list (b:bs)
findIn :: [[(Typ, [(a, [Typ])])]] -> [(Typ, [(a, [Typ])])]
-> Int -> [Int]-> ([Int], Bool)
findIn [] _ _ l = (if (sum l) > 0 then (l, True) else ([], False))
findIn (b:bs) a n l = findIn bs a n (concat [l, list])
where
list = map (compareTypes n (getType (head b)))
$ concat (getUsedTypes (snd (head a)))
compareTypes n t1 t2 = if t1 == t2 then n else 0
-- returns the typename of a
getType a = let (Type d _ _) = fst a in d
-- returns all used types
getUsedTypes [] = []
getUsedTypes (b:bs) = (getUsedType (snd b)) :(getUsedTypes bs)
getUsedType [] = []
getUsedType (c:cs) = let (Type d _ _) = c in d :(getUsedType cs)
updateAdj :: [[a]] -> [a] -> Int -> [[a]]
updateAdj (ad:ads) (c:cs) 0 = (c:ad):(updateAdj ads cs 0)
updateAdj (ad:ads) cs n = ad:(updateAdj ads cs (n-1))
updateAdj ad _ _ = ad
count as = length (List.filter (> 0) as)
updateIn [] _ _ = error "topoSort.updateIn"
updateIn (_ : inIs) c 1 = c:inIs
updateIn (inI:inIs) c n = inI:(updateIn inIs c (n-1))
-- Lines 6-8
collectL [] _ = []
collectL (inI:inIs) i = if inI == 0 then i:(collectL inIs (i+1))
else (collectL inIs (i+1))
-- Lines 9-16
whileL [] _ _ _ = []
whileL (l:ls) inI adI dtDefs = selElemAt l dtDefs
: whileL newLs newInIs adI dtDefs
where
newLs = concat [ls, snd(updateInI2 (selElemAt l adI) inI 1 [] [])]
newInIs = fst(updateInI2 (selElemAt l adI) inI 1 [] [])
updateInI2 _ [] _ newL ins = (reverse ins, reverse newL)
updateInI2 [] inI' _ _ _ = (inI', [])
updateInI2 listOfInd (inI':inIs) n newL ins =
let dInI = inI' - 1 in
if n `elem` listOfInd then
if dInI == 0 then
updateInI2 listOfInd inIs (n+1) (n:newL) (dInI:ins)
else
updateInI2 listOfInd inIs (n+1) newL (dInI:ins)
else updateInI2 listOfInd inIs (n+1) newL (inI':ins)
-- get the l-th value from the list
selElemAt :: Int -> [a] -> a
selElemAt l xs = xs !! (l - 1)
makeDtDefs :: CASL.Sign.Sign f e -> [Named (FORMULA f)]
-> [[(Typ,[(String,[Typ])])]]
makeDtDefs sign = delDoubles . (mapMaybe $ makeDtDef sign)
where
delDoubles xs = delDouble xs []
delDouble [] _ = []
delDouble (x:xs) sortList = let (Type s _a _b) = fst (head x) in
if (length sortList) ==
(length (addSortList s sortList)) then
delDouble xs sortList
else
(x:(delDouble xs (s:sortList)))
addSortList x xs = (List.nub (x :xs))
makeDtDef :: CASL.Sign.Sign f e -> Named (FORMULA f) ->
Maybe [(Typ,[(String,[Typ])])]
makeDtDef sign nf = case sentence nf of
Sort_gen_ax constrs True -> Just(map makeDt srts) where
(srts,ops,_maps) = recover_Sort_gen_ax constrs
makeDt s = (transSort s, map makeOp (List.filter (hasTheSort s) ops))
makeOp opSym = (transOP_SYMB sign opSym, transArgs opSym)
hasTheSort s (Qual_op_name _ ot _) = s == res_OP_TYPE ot
hasTheSort _ _ = error "CFOL2IsabelleHOL.hasTheSort"
transArgs (Qual_op_name _ ot _) = map transSort $ args_OP_TYPE ot
transArgs _ = error "CFOL2IsabelleHOL.transArgs"
_ -> Nothing
transSort :: SORT -> Typ
transSort s = Type (showIsaT s baseSign) [] []
transOpType :: OpType -> Typ
transOpType ot = mkCurryFunType (map transSort $ opArgs ot)
$ transSort (opRes ot)
transPredType :: PredType -> Typ
transPredType pt = mkCurryFunType (map transSort $ predArgs pt) boolType
------------------------------ Formulas ------------------------------
var :: String -> Term
--(c) var v = IsaSign.Free v noType isaTerm
var v = IsaSign.Free v noType
transVar :: VAR -> String
transVar v = showIsaT (simpleIdToId v) baseSign
xvar :: Int -> String
xvar i = if i<=26 then [chr (i+ord('a'))] else "x"++show i
rvar :: Int -> String
rvar i = if i<=9 then [chr (i+ord('R'))] else "R"++show i
quantifyIsa :: String -> (String, Typ) -> Term -> Term
quantifyIsa q (v,t) phi =
App (Const q noType) (Abs (Free v noType) t phi NotCont) NotCont
--(c) App (Const q noType isaTerm) (Abs (Cont v noType isaTerm) t phi NotCont)
--(c) NotCont
--quantifyIsa :: String -> (String, Typ) -> Term -> Term
--quantifyIsa q (v,t) phi =
-- App (Const q) (Abs [(Free v, t)] phi NotCont) NotCont
quantify :: QUANTIFIER -> (VAR, SORT) -> Term -> Term
quantify q (v,t) phi =
quantifyIsa (qname q) (transVar v, transSort t) phi
where
qname Universal = allS
qname Existential = exS
qname Unique_existential = ex1S
transOP_SYMB :: CASL.Sign.Sign f e -> OP_SYMB -> String
transOP_SYMB sign (Qual_op_name op ot _) =
case (do ots <- Map.lookup op (opMap sign)
if Set.size ots == 1 then return $ showIsaT op baseSign
else do i <- elemIndex (toOpType ot) (Set.toList ots)
return $ showIsaIT op (i+1) baseSign) of
Just str -> str
Nothing -> error ("CASL2Isabelle unknown op: " ++ show op)
transOP_SYMB _ (Op_name _) = error "CASL2Isabelle: unqualified operation"
transPRED_SYMB :: CASL.Sign.Sign f e -> PRED_SYMB -> String
transPRED_SYMB sign (Qual_pred_name p pt _) =
case (do pts <- Map.lookup p (predMap sign)
if Set.size pts == 1 then return $ showIsaT p baseSign
else do i <- elemIndex (toPredType pt) (Set.toList pts)
return $ showIsaIT p (i+1) baseSign) of
Just str -> str
Nothing -> error ("CASL2Isabelle unknown pred: " ++ show p)
transPRED_SYMB _ (Pred_name _) = error "CASL2Isabelle: unqualified predicate"
mapSen :: FormulaTranslator f e -> CASL.Sign.Sign f e -> FORMULA f -> Sentence
mapSen trFrom sign phi =
Sentence {senTerm = transFORMULA sign trFrom phi}
transFORMULA :: CASL.Sign.Sign f e -> FormulaTranslator f e
-> FORMULA f -> Term
transFORMULA sign tr (Quantification qu vdecl phi _) =
foldr (quantify qu) (transFORMULA sign tr phi) (flatVAR_DECLs vdecl)
transFORMULA sign tr (Conjunction phis _) =
if null phis then true
else foldl1 binConj (map (transFORMULA sign tr) phis)
transFORMULA sign tr (Disjunction phis _) =
if null phis then false
else foldl1 binDisj (map (transFORMULA sign tr) phis)
transFORMULA sign tr (Implication phi1 phi2 _ _) =
binImpl (transFORMULA sign tr phi1) (transFORMULA sign tr phi2)
transFORMULA sign tr (Equivalence phi1 phi2 _) =
binEqv (transFORMULA sign tr phi1) (transFORMULA sign tr phi2)
transFORMULA sign tr (Negation phi _) =
termAppl notOp (transFORMULA sign tr phi)
transFORMULA _sign _tr (True_atom _) = true
transFORMULA _sign _tr (False_atom _) = false
transFORMULA sign tr (Predication psymb args _) =
foldl termAppl
(con $ transPRED_SYMB sign psymb)
(map (transTERM sign tr) args)
transFORMULA sign tr (Existl_equation t1 t2 _) | term_sort t1 == term_sort t2 =
binEq (transTERM sign tr t1) (transTERM sign tr t2)
transFORMULA sign tr (Strong_equation t1 t2 _) | term_sort t1 == term_sort t2 =
binEq (transTERM sign tr t1) (transTERM sign tr t2)
transFORMULA sign tr (ExtFORMULA phi) =
tr sign phi
transFORMULA _ _ (Definedness _ _) = true -- totality assumed
transFORMULA _ _ (Membership t s _) | term_sort t == s = true
transFORMULA _ _ _ =
error "CASL2Isabelle.transFORMULA"
transTERM :: CASL.Sign.Sign f e
-> (CASL.Sign.Sign f e -> f -> Term) -> TERM f -> Term
transTERM _sign _tr (Qual_var v _s _) =
var $ transVar v
transTERM sign tr (Application opsymb args _) =
foldl termAppl
(con $ transOP_SYMB sign opsymb)
(map (transTERM sign tr) args)
transTERM sign tr (Conditional t1 phi t2 _) | term_sort t1 == term_sort t2 =
foldl termAppl (con "If") [transFORMULA sign tr phi,
transTERM sign tr t1, transTERM sign tr t2]
transTERM sign tr (Sorted_term t s _) | term_sort t == s = transTERM sign tr t
transTERM sign tr (Cast t s _) | term_sort t == s = transTERM sign tr t
transTERM _sign _tr _ =
error "CFOL2IsabelleHOL.transTERM"