CASL2VSERefine.hs revision ea8a48d1ed685bfecb55d3f1fa5aa2fb79a6117d
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Description : VSE refinement as comorphism
Copyright : (c) M. Codescu, DFKI Bremen 2008
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Mihai.Codescu@dfki.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The embedding comorphism from CASL to VSE.
-}
module Comorphisms.CASL2VSERefine (CASL2VSERefine (..)) where
import Logic.Logic
import Logic.Comorphism
import CASL.Logic_CASL
import CASL.Sublogic as SL
import CASL.Sign
import CASL.AS_Basic_CASL
import CASL.Morphism
import VSE.Logic_VSE
import VSE.As
import VSE.Ana
import Common.AS_Annotation
import Common.Id
import Common.ProofTree
import Common.Result
import Common.Utils (number)
import Common.Lib.State
import qualified Common.Lib.MapSet as MapSet
import qualified Data.Set as Set
import qualified Data.Map as Map
-- | The identity of the comorphism
data CASL2VSERefine = CASL2VSERefine deriving (Show)
instance Language CASL2VSERefine -- default definition is okay
instance Comorphism CASL2VSERefine
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree
VSE ()
VSEBasicSpec Sentence SYMB_ITEMS SYMB_MAP_ITEMS
VSESign
VSEMor
Symbol RawSymbol () where
sourceLogic CASL2VSERefine = CASL
sourceSublogic CASL2VSERefine = SL.cFol
targetLogic CASL2VSERefine = VSE
mapSublogic CASL2VSERefine _ = Just ()
map_theory CASL2VSERefine = mapCASLTheory
map_morphism CASL2VSERefine = return . mapMor
map_sentence CASL2VSERefine _ = error "map sen nyi" -- return. mapCASSen
map_symbol CASL2VSERefine = error "map symbol nyi"
has_model_expansion CASL2VSERefine = True
-- check these 3, but should be fine
is_weakly_amalgamable CASL2VSERefine = True
isInclusionComorphism CASL2VSERefine = False
mapCASLTheory :: (CASLSign, [Named CASLFORMULA]) ->
Result (VSESign, [Named Sentence])
mapCASLTheory (sig, n_sens) =
let (tsig, genAx) = mapSig sig
tsens = map mapNamedSen n_sens
allSens = tsens ++ genAx
in if null $ checkCases tsig allSens then return (tsig, allSens) else
fail "case error in signature"
mapSig :: CASLSign -> (VSESign, [Named Sentence])
mapSig sign =
let wrapSort (procsym, axs) s = let
restrName = gnRestrName s
eqName = gnEqName s
sProcs = [(restrName, Profile [Procparam In s] Nothing),
(eqName,
Profile [Procparam In s, Procparam In s]
(Just uBoolean))]
varx = Qual_var (genToken "x") s nullRange
vary = Qual_var (genToken "y") s nullRange
varz = Qual_var (genToken "z") s nullRange
varb = Qual_var (genToken "b")
uBoolean nullRange
varb1 = Qual_var (genToken "b1")
uBoolean nullRange
varb2 = Qual_var (genToken "b2")
uBoolean nullRange
sSens = [ makeNamed ("ga_termination_eq_" ++ show s) $
Quantification Universal [Var_decl [genToken "x",
genToken "y"] s nullRange
, Var_decl [genToken "b"]
uBoolean nullRange]
(Implication
(Conjunction [
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[varx] nullRange))
nullRange)
trueForm ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[vary] nullRange))
nullRange)
trueForm ) nullRange
] nullRange)
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s, s] uBoolean nullRange)
nullRange)
[varx, vary] nullRange))
nullRange)
trueForm ) nullRange)
True nullRange) nullRange ,
makeNamed ("ga_refl_eq_" ++ show s) $
Quantification Universal [Var_decl [genToken "x"] s nullRange
, Var_decl [genToken "b"]
uBoolean nullRange]
(Implication
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange ) nullRange)
[varx] nullRange))
nullRange)
trueForm ) nullRange)
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s, s] uBoolean nullRange)
nullRange)
[varx, varx] nullRange))
nullRange)
(Strong_equation
varb
(Application (Qual_op_name uTrue
(Op_type Total []
uBoolean
nullRange) nullRange)
[] nullRange) nullRange
)) nullRange)
True nullRange) nullRange
, makeNamed ("ga_sym_eq_" ++ show s) $
Quantification Universal [Var_decl [genToken "x",
genToken "y"] s nullRange
, Var_decl [genToken "b1",
genToken "b2"]
uBoolean nullRange]
(Implication
(Conjunction [
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[varx] nullRange))
nullRange)
trueForm ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[vary] nullRange))
nullRange)
trueForm ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b1")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s, s] uBoolean nullRange)
nullRange)
[varx, vary] nullRange))
nullRange)
(Strong_equation varb1 aTrue nullRange
)) nullRange
] nullRange)
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b2")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s, s] uBoolean nullRange)
nullRange)
[vary, varx] nullRange))
nullRange)
(Strong_equation
varb2 aTrue nullRange
)) nullRange)
True nullRange) nullRange
, makeNamed ("ga_trans_eq_" ++ show s) $
Quantification Universal [Var_decl [genToken "x",
genToken "y",
genToken "z"] s nullRange
, Var_decl [genToken "b1",
genToken "b2",
genToken "b"]
uBoolean nullRange]
(Implication
(Conjunction [
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[varx] nullRange))
nullRange)
trueForm ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange ) nullRange)
[vary] nullRange))
nullRange)
trueForm ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange ) nullRange)
[varz] nullRange))
nullRange)
trueForm ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b1")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s, s] uBoolean nullRange)
nullRange)
[varx, vary] nullRange))
nullRange)
(Strong_equation
varb1 aTrue nullRange
)) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b2")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s, s] uBoolean nullRange)
nullRange)
[vary, varz] nullRange))
nullRange)
(Strong_equation
varb2 aTrue nullRange
)) nullRange
] nullRange)
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s, s] uBoolean nullRange)
nullRange)
[varx, varz] nullRange))
nullRange)
(Strong_equation
varb aTrue nullRange
)) nullRange)
True nullRange) nullRange ]
in
(sProcs ++ procsym, sSens ++ axs)
(sortProcs, sortSens) = foldl wrapSort ([], []) $
Set.toList $ sortSet sign
wrapOp (procsym, axs) (i, opTypes) = let
funName = mkGenName i
fProcs = map (\ profile ->
(funName,
Profile
(map (Procparam In) $ opArgs profile)
(Just $ opRes profile))) opTypes
opTypeSens (OpType _ w s) = let
xtokens = map (\ (_, ii) -> genNumVar "x" ii) $
number w
xvars = map (
\ (si, ii) ->
Qual_var (genNumVar "x" ii )
si nullRange ) $
number w
yvars = map (
\ (si, ii) ->
Qual_var (genNumVar "y" ii )
si nullRange ) $
number w
ytokens = map (\ (_, ii) -> genNumVar "y" ii) $
number w
btokens = map (\ (_, ii) -> genNumVar "b" ii) $
number w
xtoken = genToken "x"
ytoken = genToken "y"
btoken = genToken "b"
xvar = Qual_var (genToken "x")
s nullRange
yvar = Qual_var (genToken "y")
s nullRange
bvar = Qual_var (genToken "b")
uBoolean nullRange
congrF = [makeNamed "" $
Quantification Universal ([Var_decl [xtoken, ytoken] s
nullRange
, Var_decl (btoken : btokens)
uBoolean nullRange
] ++ map
(\ ((t1, t2), si) ->
Var_decl [t1, t2] si
nullRange)
(zip (zip xtokens ytokens) w)
)
(Implication
(Conjunction
(concatMap (\ (si, ii) -> let
xv = (Qual_var (genNumVar "x" ii)
si nullRange)
yv = (Qual_var (genNumVar "y" ii)
si nullRange)
varbi = genNumVar "b" ii
bi1 = (Qual_var (genNumVar "b" ii)
uBoolean nullRange)
in
[ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange )
[xv] nullRange))
nullRange)
trueForm ) nullRange ,
ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange)
[yv] nullRange))
nullRange)
trueForm ) nullRange ,
ExtFORMULA $ mkRanged $ Dlformula Diamond
(Ranged
(Assign varbi
(Application
(Qual_op_name
(gnEqName si)
(Op_type Partial [si, si] uBoolean nullRange)
nullRange)
[xv, yv] nullRange))
nullRange)
(Strong_equation
bi1 aTrue nullRange)
] ) $
number w )
nullRange ) -- hypothesis
(ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged
(Assign (genToken "x")
(Application
(Qual_op_name
(mkGenName i)
(Op_type Partial w s nullRange)
nullRange)
xvars nullRange))
nullRange)
(ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged
(Assign (genToken "y")
(Application
(Qual_op_name
(mkGenName i)
(Op_type Partial w s nullRange)
nullRange)
yvars nullRange))
nullRange)
(ExtFORMULA $
Ranged (
Dlformula Diamond
( Ranged
(Assign (genToken "b")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s, s] uBoolean nullRange)
nullRange)
[xvar, yvar] nullRange))
nullRange
)
(Strong_equation
bvar aTrue nullRange)
) nullRange)
) nullRange)
) nullRange) -- conclusion
True nullRange )
nullRange
]
termF = if not $ null w then
[ makeNamed "" $ Quantification Universal
(Var_decl [xtoken] s nullRange
: map (\ (t1, si) -> Var_decl [t1] si nullRange)
(zip xtokens w))
(Implication
(Conjunction
(concatMap (\ (si, ii) -> let
xv = Qual_var (genNumVar "x" ii) si nullRange in
[ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type (w ++ [s]) nullRange) nullRange)
[xv] nullRange))
nullRange)
trueForm ) nullRange
] ) $
number w )
nullRange)
(ExtFORMULA $ Ranged
(
Dlformula Diamond
(Ranged
(Assign (genToken "x")
(Application
(Qual_op_name
(mkGenName i)
(Op_type Partial w s nullRange)
nullRange)
xvars nullRange))
nullRange)
(ExtFORMULA $
Ranged
(Dlformula Diamond (Ranged
(Call (Predication (Qual_pred_name
(gnRestrName s)
(Pred_type [s] nullRange) nullRange)
[xvar] nullRange))
nullRange)
trueForm
)
nullRange)
) nullRange)
True nullRange)
nullRange
]
else
[makeNamed "" $ Quantification Universal
[Var_decl [xtoken] s nullRange]
(ExtFORMULA $ Ranged
(
Dlformula Diamond
(Ranged
(Assign (genToken "x")
(Application
(Qual_op_name
(mkGenName i)
(Op_type Partial [] s nullRange)
nullRange)
[] nullRange))
nullRange)
(ExtFORMULA $
Ranged
(Dlformula Diamond (Ranged
(Call (Predication (Qual_pred_name
(gnRestrName s)
(Pred_type [s] nullRange) nullRange)
[xvar] nullRange))
nullRange)
trueForm
)
nullRange)
) nullRange) nullRange]
in
if null w then termF else congrF ++ termF
fSens = concatMap opTypeSens opTypes
in
(procsym ++ fProcs, axs ++ fSens)
(opProcs, opSens) = foldl wrapOp ([], []) $
MapSet.toList $ opMap sign
wrapPred (procsym, axs) (i, predTypes) = let
procName = mkGenName i
pProcs = map (\ profile -> (procName,
Profile
(map (Procparam In) $ predArgs profile)
(Just uBoolean))) predTypes
predTypeSens (PredType w) = let
xtokens = map (\ (_, ii) -> genNumVar "x" ii) $
number w
xvars = map (
\ (si, ii) ->
Qual_var (genNumVar "x" ii )
si nullRange ) $
number w
ytokens = map (\ (_, ii) -> genNumVar "y" ii) $
number w
btokens = map (\ (_, ii) -> genNumVar "b" ii) $
number w
btoken = genToken "b"
r1 = genToken "r1"
r2 = genToken "r2"
rvar1 = Qual_var (genToken "r1")
uBoolean nullRange
rvar2 = Qual_var (genToken "r2")
uBoolean nullRange
congrP = [makeNamed "" $ Quantification Universal
(Var_decl (btoken : r1 : r2 : btokens) uBoolean nullRange
: map (\ ((t1, t2), si) -> Var_decl [t1, t2] si nullRange)
(zip (zip xtokens ytokens) w))
(Implication
(Conjunction
(concatMap (\ (si, ii) -> let
xv = (Qual_var (genNumVar "x" ii)
si nullRange)
yv = (Qual_var (genNumVar "y" ii)
si nullRange)
bi1 = (Qual_var (genNumVar "b" ii)
uBoolean nullRange)
in
[ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange)
[xv] nullRange))
nullRange)
trueForm ) nullRange ,
ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange)
[yv] nullRange))
nullRange)
trueForm ) nullRange ,
ExtFORMULA $ mkRanged $ Dlformula Diamond
(Ranged
(Assign (genNumVar "b" ii)
(Application
(Qual_op_name
(gnEqName si)
(Op_type Partial [si, si] uBoolean nullRange)
nullRange)
[xv, yv] nullRange))
nullRange)
(Strong_equation
bi1 aTrue nullRange)
] ) $
number w )
nullRange ) -- hypothesis
(ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged (Call (Predication
(Qual_pred_name (mkGenName i)
(Pred_type (w ++ [uBoolean]) nullRange)
nullRange)
(map (
\ (si, ii) ->
Qual_var (genNumVar "x" ii )
si nullRange )
(number w) ++ [rvar1]) nullRange)) nullRange)
(ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged (Call (Predication
(Qual_pred_name (mkGenName i)
(Pred_type (w ++ [uBoolean]) nullRange)
nullRange)
(map (
\ (si, ii) ->
Qual_var (genNumVar "y" ii )
si nullRange )
(number w) ++ [rvar2]) nullRange)) nullRange)
(Strong_equation
rvar1
rvar2
nullRange
)
) nullRange)
) nullRange) -- conclusion
True nullRange )
nullRange
]
termP = [ makeNamed "" $ Quantification Universal
(map
(\ (t1, si) ->
Var_decl [t1] si
nullRange)
(zip xtokens w)
++ [Var_decl [r1]
uBoolean nullRange])
(Implication
(Conjunction
(concatMap (\ (si, ii) -> let
xv = (Qual_var (genNumVar "x" ii)
si nullRange)
in
[ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange)
[xv] nullRange))
nullRange)
trueForm ) nullRange
] ) $
number w )
nullRange)
(ExtFORMULA $ Ranged
(
Dlformula Diamond
(Ranged
(Call (Predication (Qual_pred_name (mkGenName i)
(Pred_type (w ++ [uBoolean]) nullRange)
nullRange)
(xvars ++ [rvar1])
nullRange))
nullRange)
trueForm
) nullRange)
True nullRange)
nullRange
]
in congrP ++ termP
pSens = concatMap predTypeSens predTypes
in
(procsym ++ pProcs, axs ++ pSens)
(predProcs, predSens) = foldl wrapPred ([], []) $
MapSet.toList $ predMap sign
procs = Procs $ Map.fromList (sortProcs ++ opProcs ++ predProcs)
newPreds = procsToPredMap procs
newOps = procsToOpMap procs
in (sign { opMap = newOps,
predMap = newPreds,
extendedInfo = procs,
sentences = [] }, sortSens ++ opSens ++ predSens)
mapNamedSen :: Named CASLFORMULA -> Named Sentence
mapNamedSen n_sen = let
sen = sentence n_sen
trans = mapCASLSen sen
in
n_sen {sentence = trans}
mapMor :: CASLMor -> VSEMor
mapMor m = let
(om, pm) = vseMorExt m
in m
{ msource = fst $ mapSig $ msource m
, mtarget = fst $ mapSig $ mtarget m
, op_map = om
, pred_map = pm
, extended_map = emptyMorExt
}
mapCASLSen :: CASLFORMULA -> Sentence
mapCASLSen f = let
(sen, (_i, vars)) = runState (mapCASLSenAux f) (0, Set.empty)
in
case f of
Sort_gen_ax _ _ -> sen
_ -> addQuantifiers vars sen
addQuantifiers :: VarSet -> Sentence -> Sentence
addQuantifiers vars sen =
Quantification Universal
(map (\ (v, s) -> Var_decl [v] s nullRange) $ Set.toList vars) sen nullRange
mapCASLSenAux :: CASLFORMULA -> State (Int, VarSet) Sentence
mapCASLSenAux f = case f of
Sort_gen_ax constrs isFree -> do
let
(genSorts, _, _ ) = recover_Sort_gen_ax constrs
toProcs (Op_name _, _) = error "must be qual names"
toProcs (Qual_op_name op (Op_type _fkind args res _range) _, l) =
( Qual_op_name (mkGenName op)
(Op_type Partial args res nullRange) nullRange,
l)
opsToProcs (Constraint nSort syms oSort) =
Constraint nSort (map toProcs syms) oSort
return $ ExtFORMULA $ Ranged
(RestrictedConstraint
(map opsToProcs constrs)
(Map.fromList $ map (\ s -> (s, gnRestrName s)) genSorts)
isFree)
nullRange
True_atom _ps -> return trueForm
False_atom _ps -> return falseForm
Strong_equation t1 t2 _ps -> do
let sort1 = sortOfTerm t1
n1 <- freshIndex sort1 -- (typeof t1)
prg1 <- mapCASLTerm n1 t1
n2 <- freshIndex sort1 -- (typeof t2)
prg2 <- mapCASLTerm n2 t2
n <- freshIndex uBoolean
return $ ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Seq (Ranged (Seq prg1 prg2) nullRange)
(Ranged
(Assign
(genNumVar "x" n)
(Application
(Qual_op_name
(gnEqName sort1)
(Op_type Partial [sort1, sort1] uBoolean nullRange)
nullRange)
[Qual_var (genNumVar "x" n1) sort1 nullRange,
Qual_var (genNumVar "x" n2) sort1 nullRange]
nullRange
)
) nullRange)
)
nullRange)
(Strong_equation (Qual_var (genNumVar "x" n) uBoolean nullRange)
aTrue nullRange)
)
nullRange
{- here i have to return smth like
-- <: xn1 := prg1;
-- xn2 := prg2;
-- xn := gn_eq_s(xn1,xn2) :> xn = True " -}
Predication pn as _qs -> do
indexes <- mapM (freshIndex . sortOfTerm) as
prgs <- mapM (\ (ti, i) -> mapCASLTerm i ti) $ zip as indexes
let xvars = map (\ (ti, i) ->
Qual_var (genNumVar "x" i)
(sortOfTerm ti) nullRange ) $ zip as indexes
n <- freshIndex uBoolean
let asgn = if not $ null prgs then
foldr1 (\ p1 p2 -> Ranged (Seq p1 p2) nullRange) prgs
else Ranged Skip nullRange
case pn of
Pred_name _ -> fail "must be qualified"
Qual_pred_name pname (Pred_type ptype _) _ -> return $ ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Seq
asgn
(Ranged (Assign (genNumVar "x" n)
(Application
(Qual_op_name
(mkGenName pname)
(Op_type Partial ptype uBoolean nullRange) nullRange)
xvars nullRange))
nullRange))
nullRange)
(Strong_equation
(Qual_var (genNumVar "x" n) uBoolean nullRange)
aTrue nullRange))
nullRange
{- <: xi := prgi;
x:= gn_p(x1,..,xn):> x = True -}
Conjunction fs _r -> do
mapFs <- mapM mapCASLSenAux fs
return $ Conjunction mapFs nullRange
Disjunction fs _r -> do
mapFs <- mapM mapCASLSenAux fs
return $ Disjunction mapFs nullRange
Implication f1 f2 flag _r -> do
trf1 <- mapCASLSenAux f1
trf2 <- mapCASLSenAux f2
return $ Implication trf1 trf2 flag nullRange
Equivalence f1 f2 _r -> do
trf1 <- mapCASLSenAux f1
trf2 <- mapCASLSenAux f2
return $ Equivalence trf1 trf2 nullRange
Negation f1 _r -> do
trf <- mapCASLSenAux f1
return $ Negation trf nullRange
Quantification q vars sen _ ->
case q of
Universal -> do
trSen <- mapCASLSenAux sen
let h = map (\ (Var_decl varS s _) -> let
restrs = map (\ v -> ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName s)
(Pred_type [s] nullRange)
nullRange
)
[Qual_var v s nullRange]
nullRange
)
)
nullRange)
trueForm) nullRange)
varS
in
Conjunction restrs nullRange)
vars
let sen' = Implication
(foldr1 (\ sen1 sen2 -> Conjunction [sen1, sen2] nullRange) h)
trSen True nullRange
return $ Quantification q vars sen' nullRange
Existential -> do
trSen <- mapCASLSenAux sen
let h = map (\ (Var_decl varS s _) -> let
restrs = map (\ v -> ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName s)
(Pred_type [s] nullRange)
nullRange
)
[Qual_var v s nullRange]
nullRange
)
)
nullRange)
trueForm) nullRange)
varS
in
Conjunction restrs nullRange)
vars
let sen' = Conjunction
[foldr1 (\ sen1 sen2 -> Conjunction [sen1, sen2] nullRange) h,
trSen] nullRange
return $ Quantification q vars sen' nullRange
Unique_existential -> fail "nyi Unique_existential"
_ -> fail "Comorphisms.CASL2VSERefine.mapCASLSenAux"
mapCASLTerm :: Int -> TERM () -> State (Int, VarSet) Program
mapCASLTerm n t = case t of
Qual_var v s _ps -> return $
Ranged (Assign (genNumVar "x" n)
(Qual_var v s nullRange)) nullRange
Application opsym as _qs -> do
indexes <- mapM (freshIndex . sortOfTerm) as
let xvars = map (\ (ti, i) ->
Qual_var (genNumVar "x" i)
(sortOfTerm ti) nullRange ) $ zip as indexes
prgs <- mapM (\ (ti, i) -> mapCASLTerm i ti) $ zip as indexes
let asgn = if not $ null prgs then
foldr1 (\ p1 p2 -> Ranged (Seq p1 p2) nullRange) prgs
else Ranged Skip nullRange
case opsym of
Op_name _ -> fail "must be qualified"
Qual_op_name oName (Op_type _ args res _) _ ->
case args of
[] -> return $ Ranged (Assign (genNumVar "x" n)
(Application
(Qual_op_name
(mkGenName oName)
(Op_type Partial args res nullRange)
nullRange
)
xvars nullRange))
nullRange
_ -> return $ Ranged
(Seq
asgn
(Ranged (Assign (genNumVar "x" n)
(Application
(Qual_op_name
(mkGenName oName)
(Op_type Partial args res nullRange)
nullRange
)
xvars nullRange))
nullRange))
nullRange
_ -> fail "nyi term"
freshIndex :: SORT -> State (Int, VarSet) Int
freshIndex ss = do
(i, s) <- get
let v = genNumVar "x" i
put (i + 1, Set.insert (v, ss) s)
return i