CASL2VSERefine.hs revision 2a5b885d9350ec6dd8bc4992ee91d2f68aa592f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances #-}
{- |
Module : $Header$
Description : VSE refinement as comorphism
Copyright : (c) M. Codescu, DFKI Bremen 2008
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Mihai.Codescu@dfki.de
Stability : provisional
Portability : non-portable (imports Logic.Logic)
The embedding comorphism from CASL to VSE.
-}
module Comorphisms.CASL2VSERefine (CASL2VSERefine(..)
) where
import Logic.Logic
import Logic.Comorphism
import CASL.Logic_CASL
import CASL.Sublogic as SL
import CASL.Sign
import CASL.AS_Basic_CASL
import CASL.Morphism
import VSE.Logic_VSE
import VSE.As
import VSE.Ana
import Common.AS_Annotation
import Common.Id
import Common.ProofTree
import Common.Result
import Common.Utils (number)
import Common.Lib.State
import qualified Common.Lib.MapSet as MapSet
import qualified Data.Set as Set
import qualified Data.Map as Map
-- | The identity of the comorphism
data CASL2VSERefine = CASL2VSERefine deriving (Show)
instance Language CASL2VSERefine -- default definition is okay
instance Comorphism CASL2VSERefine
CASL CASL_Sublogics
CASLBasicSpec CASLFORMULA SYMB_ITEMS SYMB_MAP_ITEMS
CASLSign
CASLMor
Symbol RawSymbol ProofTree
VSE ()
VSEBasicSpec Sentence SYMB_ITEMS SYMB_MAP_ITEMS
VSESign
VSEMor
Symbol RawSymbol () where
sourceLogic CASL2VSERefine = CASL
sourceSublogic CASL2VSERefine = SL.cFol
targetLogic CASL2VSERefine = VSE
mapSublogic CASL2VSERefine _ = Just ()
map_theory CASL2VSERefine = mapCASLTheory
map_morphism CASL2VSERefine = return . mapMor
map_sentence CASL2VSERefine _ = error "map sen nyi" --return. mapCASSen
map_symbol CASL2VSERefine = error "map symbol nyi"
has_model_expansion CASL2VSERefine = True
--check these 3, but should be fine
is_weakly_amalgamable CASL2VSERefine = True
isInclusionComorphism CASL2VSERefine = False
mapCASLTheory :: (CASLSign, [Named CASLFORMULA]) ->
Result (VSESign, [Named Sentence])
mapCASLTheory (sig, n_sens) =
let (tsig, genAx) = mapSig sig
tsens = map mapNamedSen n_sens
allSens = tsens ++ genAx
in if null $ checkCases tsig allSens then return (tsig, allSens) else
fail "case error in signature"
mapSig :: CASLSign -> (VSESign, [Named Sentence])
mapSig sign =
let wrapSort (procsym, axs) s = let
restrName = gnRestrName s
eqName = gnEqName s
sProcs = [(restrName, Profile [Procparam In s] Nothing),
(eqName,
Profile [Procparam In s, Procparam In s]
(Just uBoolean))]
varx = Qual_var (genToken "x") s nullRange
vary = Qual_var (genToken "y") s nullRange
varz = Qual_var (genToken "z") s nullRange
varb = Qual_var (genToken "b")
uBoolean nullRange
varb1 = Qual_var (genToken "b1")
uBoolean nullRange
varb2 = Qual_var (genToken "b2")
uBoolean nullRange
sSens = [ makeNamed ("ga_termination_eq_" ++ show s) $
Quantification Universal [Var_decl [genToken "x",
genToken "y"] s nullRange
, Var_decl [genToken "b"]
uBoolean nullRange]
(Implication
(Conjunction [
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[varx] nullRange))
nullRange)
(True_atom nullRange) ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[vary] nullRange))
nullRange)
(True_atom nullRange) ) nullRange
] nullRange)
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s,s] uBoolean nullRange)
nullRange)
[varx, vary] nullRange))
nullRange)
(True_atom nullRange) ) nullRange)
True nullRange) nullRange ,
makeNamed ("ga_refl_eq_" ++ show s) $
Quantification Universal [Var_decl [genToken "x"] s nullRange
,Var_decl [genToken "b"]
uBoolean nullRange]
(Implication
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange ) nullRange)
[varx] nullRange))
nullRange)
(True_atom nullRange) ) nullRange)
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s,s] uBoolean nullRange)
nullRange)
[varx, varx] nullRange))
nullRange)
(Strong_equation
varb
(Application (Qual_op_name uTrue
(Op_type Total []
uBoolean
nullRange)nullRange)
[] nullRange) nullRange
)) nullRange)
True nullRange) nullRange
, makeNamed ("ga_sym_eq_" ++ show s) $
Quantification Universal [Var_decl [genToken "x",
genToken "y"] s nullRange
,Var_decl [genToken "b1",
genToken "b2"]
uBoolean nullRange]
(Implication
(Conjunction [
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[varx] nullRange))
nullRange)
(True_atom nullRange) ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[vary] nullRange))
nullRange)
(True_atom nullRange) ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b1")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s,s] uBoolean nullRange)
nullRange)
[varx, vary] nullRange))
nullRange)
(Strong_equation varb1 aTrue nullRange
)) nullRange
] nullRange)
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b2")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s,s] uBoolean nullRange)
nullRange)
[vary, varx] nullRange))
nullRange)
(Strong_equation
varb2 aTrue nullRange
)) nullRange)
True nullRange) nullRange
, makeNamed ("ga_trans_eq_" ++ show s) $
Quantification Universal [Var_decl [genToken "x",
genToken "y",
genToken "z"] s nullRange
,Var_decl [genToken "b1",
genToken "b2",
genToken "b"]
uBoolean nullRange]
(Implication
(Conjunction [
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange) nullRange)
[varx] nullRange))
nullRange)
(True_atom nullRange) ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange ) nullRange)
[vary] nullRange))
nullRange)
(True_atom nullRange) ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Call
(Predication (Qual_pred_name restrName
(Pred_type [s] nullRange ) nullRange)
[varz] nullRange))
nullRange)
(True_atom nullRange) ) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b1")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s,s] uBoolean nullRange)
nullRange)
[varx, vary] nullRange))
nullRange)
(Strong_equation
varb1 aTrue nullRange
)) nullRange,
ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b2")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s,s] uBoolean nullRange)
nullRange)
[vary, varz] nullRange))
nullRange)
(Strong_equation
varb2 aTrue nullRange
)) nullRange
] nullRange)
(ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Assign (genToken "b")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s,s] uBoolean nullRange)
nullRange)
[varx, varz] nullRange))
nullRange)
(Strong_equation
varb aTrue nullRange
)) nullRange)
True nullRange) nullRange ]
in
(sProcs ++ procsym, sSens ++ axs)
(sortProcs, sortSens) = foldl wrapSort ([],[]) $
Set.toList $ sortSet sign
wrapOp (procsym, axs) (i, opTypes) = let
funName = mkGenName i
fProcs = map (\profile ->
(funName,
Profile
(map (Procparam In) $ opArgs profile)
(Just $ opRes profile))) opTypes
opTypeSens (OpType _ w s) = let
xtokens = map (\(_,ii) -> genNumVar "x" ii) $
number w
xvars = map (
\(si, ii) ->
Qual_var (genNumVar "x" ii )
si nullRange ) $
number w
yvars = map (
\(si, ii) ->
Qual_var (genNumVar "y" ii )
si nullRange ) $
number w
ytokens = map (\(_,ii) -> genNumVar "y" ii) $
number w
btokens = map (\(_,ii) -> genNumVar "b" ii) $
number w
xtoken = genToken "x"
ytoken = genToken "y"
btoken = genToken "b"
xvar = Qual_var (genToken "x")
s nullRange
yvar = Qual_var (genToken "y")
s nullRange
bvar = Qual_var (genToken "b")
uBoolean nullRange
congrF = [makeNamed "" $
Quantification Universal ([Var_decl [xtoken, ytoken] s
nullRange
,Var_decl (btoken:btokens)
uBoolean nullRange
] ++ map
(\((t1,t2),si) ->
Var_decl [t1, t2] si
nullRange)
(zip (zip xtokens ytokens) w)
)
(Implication
(Conjunction
(concatMap (\(si,ii) -> let
xv = (Qual_var (genNumVar "x" ii)
si nullRange)
yv = (Qual_var (genNumVar "y" ii)
si nullRange)
varbi = genNumVar "b" ii
bi1 = (Qual_var (genNumVar "b" ii)
uBoolean nullRange)
in
[ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange )
[xv] nullRange))
nullRange)
(True_atom nullRange) ) nullRange ,
ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange)
[yv] nullRange))
nullRange)
(True_atom nullRange) ) nullRange ,
ExtFORMULA $ mkRanged $ Dlformula Diamond
(Ranged
(Assign varbi
(Application
(Qual_op_name
(gnEqName si)
(Op_type Partial [si,si] uBoolean nullRange)
nullRange)
[xv, yv] nullRange))
nullRange)
(Strong_equation
bi1 aTrue nullRange)
] ) $
number w )
nullRange )--hypothesis
(ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged
(Assign (genToken "x")
(Application
(Qual_op_name
(mkGenName i)
(Op_type Partial w s nullRange)
nullRange)
xvars nullRange))
nullRange)
(ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged
(Assign (genToken "y")
(Application
(Qual_op_name
(mkGenName i)
(Op_type Partial w s nullRange)
nullRange)
yvars nullRange))
nullRange)
(ExtFORMULA $
Ranged (
Dlformula Diamond
( Ranged
(Assign (genToken "b")
(Application
(Qual_op_name
(gnEqName s)
(Op_type Partial [s,s] uBoolean nullRange)
nullRange)
[xvar, yvar] nullRange))
nullRange
)
(Strong_equation
bvar aTrue nullRange)
) nullRange)
) nullRange)
) nullRange) --conclusion
True nullRange )
nullRange
]
termF = if not $ null w then
[ makeNamed "" $ Quantification Universal
(Var_decl [xtoken] s nullRange
: map (\ (t1, si) -> Var_decl [t1] si nullRange)
(zip xtokens w))
(Implication
(Conjunction
(concatMap (\ (si, ii) -> let
xv = Qual_var (genNumVar "x" ii) si nullRange in
[ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type (w ++ [s]) nullRange) nullRange)
[xv] nullRange))
nullRange)
(True_atom nullRange) ) nullRange
] ) $
number w )
nullRange)
(ExtFORMULA $ Ranged
(
Dlformula Diamond
(Ranged
(Assign (genToken "x")
(Application
(Qual_op_name
(mkGenName i)
(Op_type Partial w s nullRange)
nullRange)
xvars nullRange))
nullRange)
(ExtFORMULA $
Ranged
(Dlformula Diamond (Ranged
(Call (Predication (Qual_pred_name
(gnRestrName s)
(Pred_type [s] nullRange) nullRange)
[xvar] nullRange))
nullRange)
(True_atom nullRange)
)
nullRange)
) nullRange)
True nullRange)
nullRange
]
else
[makeNamed "" $ Quantification Universal
[Var_decl [xtoken] s nullRange]
(ExtFORMULA $ Ranged
(
Dlformula Diamond
(Ranged
(Assign (genToken "x")
(Application
(Qual_op_name
(mkGenName i)
(Op_type Partial [] s nullRange)
nullRange)
[] nullRange))
nullRange)
(ExtFORMULA $
Ranged
(Dlformula Diamond (Ranged
(Call (Predication (Qual_pred_name
(gnRestrName s)
(Pred_type [s] nullRange) nullRange)
[xvar] nullRange))
nullRange)
(True_atom nullRange)
)
nullRange)
) nullRange) nullRange]
in
if null w then termF else congrF ++ termF
fSens = concatMap opTypeSens opTypes
in
(procsym ++ fProcs, axs ++ fSens)
(opProcs, opSens) = foldl wrapOp ([],[]) $
MapSet.toList $ opMap sign
wrapPred (procsym, axs) (i, predTypes) = let
procName = mkGenName i
pProcs = map (\profile -> (procName,
Profile
(map (Procparam In) $ predArgs profile)
(Just uBoolean))) predTypes
predTypeSens (PredType w) = let
xtokens = map (\(_,ii) -> genNumVar "x" ii) $
number w
xvars = map (
\(si, ii) ->
Qual_var (genNumVar "x" ii )
si nullRange ) $
number w
ytokens = map (\(_,ii) -> genNumVar "y" ii) $
number w
btokens = map (\(_,ii) -> genNumVar "b" ii) $
number w
btoken = genToken "b"
r1 = genToken "r1"
r2 = genToken "r2"
rvar1 = Qual_var (genToken "r1")
uBoolean nullRange
rvar2 = Qual_var (genToken "r2")
uBoolean nullRange
congrP = [makeNamed "" $ Quantification Universal
(Var_decl (btoken : r1 : r2 : btokens) uBoolean nullRange
: map (\ ((t1, t2), si) -> Var_decl [t1, t2] si nullRange)
(zip (zip xtokens ytokens) w))
(Implication
(Conjunction
(concatMap (\(si,ii) -> let
xv = (Qual_var (genNumVar "x" ii)
si nullRange)
yv = (Qual_var (genNumVar "y" ii)
si nullRange)
bi1 = (Qual_var (genNumVar "b" ii)
uBoolean nullRange)
in
[ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange)
[xv] nullRange))
nullRange)
(True_atom nullRange) ) nullRange ,
ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange)
[yv] nullRange))
nullRange)
(True_atom nullRange) ) nullRange ,
ExtFORMULA $ mkRanged $ Dlformula Diamond
(Ranged
(Assign (genNumVar "b" ii)
(Application
(Qual_op_name
(gnEqName si)
(Op_type Partial [si,si] uBoolean nullRange)
nullRange)
[xv, yv] nullRange))
nullRange)
(Strong_equation
bi1 aTrue nullRange)
] ) $
number w )
nullRange )--hypothesis
(ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged (Call (Predication
(Qual_pred_name (mkGenName i)
(Pred_type (w ++ [uBoolean]) nullRange)
nullRange)
(map (
\(si, ii) ->
Qual_var (genNumVar "x" ii )
si nullRange )
(number w) ++ [rvar1]) nullRange)) nullRange)
(ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged (Call (Predication
(Qual_pred_name (mkGenName i)
(Pred_type (w ++ [uBoolean]) nullRange)
nullRange)
(map (
\(si, ii) ->
Qual_var (genNumVar "y" ii )
si nullRange )
(number w) ++ [rvar2]) nullRange)) nullRange)
(Strong_equation
rvar1
rvar2
nullRange
)
) nullRange)
) nullRange) --conclusion
True nullRange )
nullRange
]
termP = [ makeNamed "" $ Quantification Universal
(map
(\(t1,si) ->
Var_decl [t1] si
nullRange)
(zip xtokens w)
++ [Var_decl [r1]
uBoolean nullRange])
(Implication
(Conjunction
(concatMap (\(si,ii) -> let
xv = (Qual_var (genNumVar "x" ii)
si nullRange)
in
[ExtFORMULA $ Ranged ( Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName si)
(Pred_type [si] nullRange) nullRange)
[xv] nullRange))
nullRange)
(True_atom nullRange) ) nullRange
] ) $
number w )
nullRange)
(ExtFORMULA $ Ranged
(
Dlformula Diamond
(Ranged
(Call (Predication (Qual_pred_name (mkGenName i)
(Pred_type (w ++ [uBoolean]) nullRange)
nullRange)
(xvars++[rvar1])
nullRange))
nullRange)
( True_atom
nullRange)
) nullRange)
True nullRange)
nullRange
]
in congrP ++ termP
pSens = concatMap predTypeSens predTypes
in
(procsym ++ pProcs, axs ++ pSens)
(predProcs, predSens) = foldl wrapPred ([],[]) $
MapSet.toList $ predMap sign
procs = Procs $ Map.fromList (sortProcs ++ opProcs ++ predProcs)
newPreds = procsToPredMap procs
newOps = procsToOpMap procs
in(sign { opMap = newOps,
predMap = newPreds,
extendedInfo = procs,
sentences = [] }, sortSens ++ opSens ++ predSens)
mapNamedSen :: Named CASLFORMULA -> Named Sentence
mapNamedSen n_sen = let
sen = sentence n_sen
trans = mapCASLSen sen
in
n_sen{sentence = trans}
mapMor :: CASLMor -> VSEMor
mapMor m = let
(om, pm) = vseMorExt m
in m
{ msource = fst $ mapSig $ msource m
, mtarget = fst $ mapSig $ mtarget m
, op_map = om
, pred_map = pm
, extended_map = emptyMorExt
}
mapCASLSen :: CASLFORMULA -> Sentence
mapCASLSen f = let
(sen, (_i, vars)) = runState (mapCASLSenAux f) (0, Set.empty)
in
case f of
Sort_gen_ax _ _ -> sen
_ -> addQuantifiers vars sen
addQuantifiers :: VarSet -> Sentence -> Sentence
addQuantifiers vars sen =
Quantification Universal
(map (\(v,s) -> Var_decl [v] s nullRange) $ Set.toList vars) sen nullRange
mapCASLSenAux :: CASLFORMULA -> State (Int, VarSet) Sentence
mapCASLSenAux f = case f of
Sort_gen_ax constrs isFree -> do
let
(genSorts, _, _ ) = recover_Sort_gen_ax constrs
toProcs (Op_name _, _) = error "must be qual names"
toProcs (Qual_op_name op (Op_type _fkind args res _range) _, l) =
( Qual_op_name (mkGenName op)
(Op_type Partial args res nullRange) nullRange,
l)
opsToProcs (Constraint nSort syms oSort) =
Constraint nSort (map toProcs syms) oSort
return $ ExtFORMULA $ Ranged
(RestrictedConstraint
(map opsToProcs constrs)
(Map.fromList $ map (\s -> (s, gnRestrName s)) genSorts)
isFree)
nullRange
True_atom _ps -> return $ True_atom nullRange
False_atom _ps -> return $ False_atom nullRange
Strong_equation t1 t2 _ps -> do
let sort1 = sortOfTerm t1
n1 <- freshIndex sort1 -- (typeof t1)
prg1 <- mapCASLTerm n1 t1
n2 <- freshIndex sort1 -- (typeof t2)
prg2 <- mapCASLTerm n2 t2
n <- freshIndex uBoolean
return $ ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Seq (Ranged (Seq prg1 prg2) nullRange)
(Ranged
(Assign
(genNumVar "x" n)
(Application
(Qual_op_name
(gnEqName sort1)
(Op_type Partial [sort1,sort1] uBoolean nullRange)
nullRange)
[Qual_var (genNumVar "x" n1) sort1 nullRange,
Qual_var (genNumVar "x" n2) sort1 nullRange]
nullRange
)
) nullRange)
)
nullRange)
(Strong_equation (Qual_var (genNumVar "x" n) uBoolean nullRange)
aTrue nullRange)
)
nullRange
-- here i have to return smth like
-- <: xn1 := prg1;
-- xn2 := prg2;
-- xn := gn_eq_s(xn1,xn2) :> xn = True "
Predication pn as _qs -> do
indexes <- mapM (freshIndex . sortOfTerm) as
prgs <- mapM (\(ti, i) -> mapCASLTerm i ti) $ zip as indexes
let xvars = map (\(ti,i) ->
Qual_var (genNumVar "x" i)
(sortOfTerm ti) nullRange ) $ zip as indexes
n <- freshIndex uBoolean
let asgn = if not $ null prgs then
foldr1 (\p1 p2 -> Ranged (Seq p1 p2) nullRange) prgs
else Ranged Skip nullRange
case pn of
Pred_name _ -> fail "must be qualified"
Qual_pred_name pname (Pred_type ptype _)_ -> return $ ExtFORMULA $ Ranged
(Dlformula Diamond
(Ranged
(Seq
asgn
(Ranged (Assign (genNumVar "x" n)
(Application
(Qual_op_name
(mkGenName pname)
(Op_type Partial ptype uBoolean nullRange) nullRange)
xvars nullRange))
nullRange))
nullRange)
(Strong_equation
(Qual_var (genNumVar "x" n) uBoolean nullRange)
aTrue nullRange))
nullRange
-- <: xi := prgi;
-- x:= gn_p(x1,..,xn):> x = True
Conjunction fs _r -> do
mapFs <- mapM mapCASLSenAux fs
return $ Conjunction mapFs nullRange
Disjunction fs _r -> do
mapFs <- mapM mapCASLSenAux fs
return $ Disjunction mapFs nullRange
Implication f1 f2 flag _r -> do
trf1 <- mapCASLSenAux f1
trf2 <- mapCASLSenAux f2
return $ Implication trf1 trf2 flag nullRange
Equivalence f1 f2 _r -> do
trf1 <- mapCASLSenAux f1
trf2 <- mapCASLSenAux f2
return $ Equivalence trf1 trf2 nullRange
Negation f1 _r -> do
trf <- mapCASLSenAux f1
return $ Negation trf nullRange
Quantification q vars sen _ ->
case q of
Universal -> do
trSen <- mapCASLSenAux sen
let h = map (\ (Var_decl varS s _) -> let
restrs = map (\v -> ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName s)
(Pred_type [s] nullRange)
nullRange
)
[Qual_var v s nullRange]
nullRange
)
)
nullRange)
(True_atom nullRange)) nullRange)
varS
in
Conjunction restrs nullRange)
vars
let sen' = Implication
(foldr1 (\ sen1 sen2 -> Conjunction [sen1,sen2] nullRange) h)
trSen True nullRange
return $ Quantification q vars sen' nullRange
Existential -> do
trSen <- mapCASLSenAux sen
let h = map (\ (Var_decl varS s _) -> let
restrs = map (\v -> ExtFORMULA $ Ranged (
Dlformula Diamond
(Ranged
(Call
(Predication
(Qual_pred_name
(gnRestrName s)
(Pred_type [s] nullRange)
nullRange
)
[Qual_var v s nullRange]
nullRange
)
)
nullRange)
(True_atom nullRange)) nullRange)
varS
in
Conjunction restrs nullRange)
vars
let sen' = Conjunction
[foldr1 (\ sen1 sen2 -> Conjunction [sen1,sen2] nullRange) h,
trSen] nullRange
return $ Quantification q vars sen' nullRange
Unique_existential -> fail "nyi Unique_existential"
_ -> fail "Comorphisms.CASL2VSERefine.mapCASLSenAux"
mapCASLTerm :: Int -> TERM () -> State (Int, VarSet) Program
mapCASLTerm n t = case t of
Qual_var v s _ps -> return $
Ranged (Assign (genNumVar "x" n)
(Qual_var v s nullRange)) nullRange
Application opsym as _qs -> do
indexes <- mapM (freshIndex . sortOfTerm) as
let xvars = map (\(ti,i) ->
Qual_var (genNumVar "x" i)
(sortOfTerm ti) nullRange ) $ zip as indexes
prgs <- mapM (\(ti, i) -> mapCASLTerm i ti) $ zip as indexes
let asgn = if not $ null prgs then
foldr1 (\p1 p2 -> Ranged (Seq p1 p2) nullRange) prgs
else Ranged Skip nullRange
case opsym of
Op_name _ -> fail "must be qualified"
Qual_op_name oName (Op_type _ args res _) _ ->
case args of
[] -> return $ Ranged (Assign (genNumVar "x" n)
(Application
(Qual_op_name
(mkGenName oName)
(Op_type Partial args res nullRange)
nullRange
)
xvars nullRange))
nullRange
_ -> return $ Ranged
(Seq
asgn
(Ranged (Assign (genNumVar "x" n)
(Application
(Qual_op_name
(mkGenName oName)
(Op_type Partial args res nullRange)
nullRange
)
xvars nullRange))
nullRange))
nullRange
_ -> fail "nyi term"
freshIndex :: SORT -> State (Int, VarSet) Int
freshIndex ss = do
(i, s) <- get
let v = genNumVar "x" i
put (i + 1, Set.insert (v,ss) s)
return i